
PMap: A Non-volatile Lock-free Hash Map 
with Open Addressing

Kenneth Lamar (UCF)

Christina Peterson (UCF)

Damian Dechev (UCF)

Roger Pearce (LLNL)

Keita Iwabuchi (LLNL)

Peter Pirkelbauer (LLNL)



Setting

• Intel Optane DC
• Newly available
• High capacity
• Persistence

• Graph analytics
• Billions of vertices

• Concurrent data structures
• High performance access to data in shared memory

• Hash maps
• Fundamental data structure
• Commonly used in graph analytics
• Few high-performance NVM options

2



Design Goals

• Read optimized
• Persistence need no flush or fence after first read

• Runtime over recovery
• Persist as little as possible

• Compact representation and few cache misses
• Arrays

• Open addressing

• Low memory management overhead
• Allocate large table chunks

3



Solution

• PMap (Persistent concurrent hash Map)
• Non-volatile

• Lock-free
• Guaranteed system-wide progress

• Scales up with multiple threads

• Open addressing
• In-place keys and values

• Resizable
• Shrink or expand

4



Data Layout

Legend:

Class names
Persistent data

5



Operations

• insert()
• Find a free slot
• Insert if the key does not yet exist

• replace()
• Find the key
• Replace the value

• remove()
• Find the key
• Replace the value with a tombstone
• Note: Key claims this slot permanently

• update()
• Find the key
• Perform CAS on value

• Replacement value dependent on old value
• Ex. Counter increments by 1 atomically

6



Resizing

• Adapted from Cliff Click’s hash map
• Lock-free resizing is challenging

• Keys and values are separate atomics
• Partial operations are possible

• Allocate a table twice (or half) the current table size
• Key-value pairs are individually migrated

• Concurrent
• Parallel
• Incremental

• Reserves a resize bit for each key and value
• Indicates migration in progress

• Thread must help migrate before returning value
• Resize bit cuts into usable bits

• Limits keys and values to 63 bits each

• Once migrated, the old slot is replaced with a migration sentinel
• Slot cannot be reused
• Migration is complete when all slots have migration sentinels

7



Persistence

• Adaptation of link-and-persist

• Adds memory consistency after crash

• Minimizes overhead for read-heavy workloads

• Minimal changes required

• Cost: 1 bit per variable
• Effective limit: 62-bit variables

• Reasonable tradeoff for our use cases

8



Recovery

• Only persist keys and values

• Filesystem data (name, size) infers contents

• Link-and-persist ensures data is consistent
• Orphans are possible but discarded during recovery

1024 bits

512 bits

256 bits

9



Related Works Compared

• Concurrent level hashing (clevel)
• Lock-free
• Open addressing (of pointers)
• Resize (but only expansion)

• OneFile hash map (OneFile)
• Wait-free
• Transactional
• Node-based

• Standard Template Library hash map (STL)
• Volatile
• std::map with global lock

• Persistent Memory Development Kit concurrent_hash_map (PMDK)
• Based on Intel TBB
• Reader-writer locks

10



Testing Environment

• System:
• 2x 20 core / 40 thread Intel Xeon Gold 6230
• 134GB DRAM, 248GB Optane DC

• Optane Configuration:
• App Direct mode
• Filesystem-DAX (fsdax) mode

• Code Configuration:
• C++
• GCC (-O3 -march=native -flto)

• Test Configuration:
• 62-bit keys and values
• Tables initially 214

• No garbage collection

11



Performance Comparisons

(L
o
w

er is b
etter)

12



Limitations and Future Work

• Limited to 62-bit keys and 62-bit values

• Linear probing
• Simple

• High load factor means poor performance

• Alternatives:
• Cuckoo hashing

• Hopscotch hashing

• Multiple hash functions

13



Conclusions

• PMap

• Outperforms state-of-the-art alternatives

• Useful guarantees
• Non-volatile

• Scalable

• Lock-free

• Resizable

• Open addressing

14



Thank You

Contact:
kenneth@knights.ucf.edu

Code:
https://github.com/ucf-cs/PMap

Speaker’s
Webcam view

mailto:kenneth@knights.ucf.edu
https://github.com/ucf-cs/PMap

