
HBTree: an Efficient Index Structure Based on

Hybrid DRAM-NVM

Yuanhui Zhou1, Taotao Sheng1, Jiguang Wan*1,2

1. WNLO，Huazhong University of Science and Technology, Wuhan,Hubei, China

2. Shenzhen Huazhong University of Science and Technology Research Institute

NVMSA 2021

目录
CONTENTS

04

03

02

01

Evaluation

Design of HBTree

Motivation

Background

Background

01

Background – Persistent Memory

 Emerging Npn-Volatile Memories(NVMs)
 PCM, STT-MRAM, RRAM

 Characteristics of NVM

Optane DC PMM
 first 3D X-Point persistent memory (PM) product

 low latency
 non-volatility
 low power consumption

 high storage capacity
 byte addressing

Background – Indexing structures

Conventional indexing structures not suitable NVM

Optimizing indexing structures for NVM based on conventional indexes

 Optimize a single index structure to accommodate full NVM memory

 Path Hash，Leveling Hash，NV-Tree ……

 reduce the consistency overhead on NVM and speeds up failure recovery

 FAST&FAIR，wB+Tree，CDDS-Tree……

 study hybrid structure and use DRAM to optimize system performance

 FPTree，HiKV，LB+Tree……

Motivation

02

motivation

 B+Tree more suit NVM
 Simple structure
 Excellent Scan performance
 Random Read and Write

 DRAM-NVM

 Challenges
Data consistency
 Insert and Split overhead
Recovery time

Operational Efficiency

Rich KV operations
— Load/Put/Get/Delete

 observe
DRAM-B+Tree（No persistence)
> DRAM-B+Tree-log (log big)

> FPTree
> FAST&FAIR

How to take advantage of the DRAM-NVM hybrid structure

Recovery Time

How to reduce the recovery time?

How to reduce the log？

Make some data into NVM Recover time for FPTree and DRAM-B+Tree-Log

Design

03

Design ideas

 B+ tree index structure with DRAM-NVM hybrid Memory

Cache hot data in DRAM to improve performance

ensure data consistency

speed up the system failure recovery

Overall Architecture of HBTree

 HBTree: a hybrid three-layer persistent index

Index layer
 a B+tree on DRAM
 Does not persistent

Middle layer

 Data layer

Hotspot Statistica Algorithm

 HBTree: a hybrid three-layer persistent index

 Index layer

Middle layer
 Stores LogTree metadata
 Identify hot NVMTree

T(t+∆t) = A* Tt + Operate ∆t

A default 0.5

 backup to NVM

 Data layer

LogTrees

 HBTree: a hybrid three-layer persistent index

 Index layer
Middle layer

Data layer
 Data persistence

 Fast recovery
 Highspeed access
 Consistency

Dynamic Extension

CacheTree Management

 CacheTree Create
 Copy NVMTree to DRAM to generate CacheTree

 Write operation is recorded in a log
 The read request first looks for the log and then the NVMTree

 Log be played back to CacheTree

CacheTree Syschronization
 Only data marked dirty is synchronized
 Old log is replaced by new log

CacheTree Recycle
 Read paused and update dirty data to NVMTree
 Release CacheTree nodes and log record to replay
 NVMTree work and delete log

Consistency

 Copy-on-write
 NVMTree: over 8B write
 CacheTree Syschronization and CacheTree Recycle

The log is exploited to ensure consistency

Recovery

 Middle layer Recovery
 traversing the persistent metadata node linked list in NVM
 The NVMTree in the split continues

 LogTree Recovery
 Playback logs ensure the integrity of the NVMTree
 Create CacheTree based on middle layer hot data information
 Playback logs to recovery CacheTree

 The index layer be recreated directly through the middle layer

NOTE:
CacheTree recovery within different LogTrees can be performed concurrently

Evaluation

04

Evaluation methodology

 Platform:
 CPU: two 24-core Intel Xeon Gold 5218R CPUs(2.3GHz)
 DRAM: DDR4 64GB
 OS： linux (kernel version 5.10.1)
 NVM: Intel Optane DC Persistent Memory 128G * 2

Workloads
YCSB： 8B key, 8B value

Load: 200 million, others: 10 million

Compared systems：
 FPTree
 FAST&FIRE

Worklaods Requestdistribution Op

Load Uniform 100% Put

A Zipfian 50%Get，50%Update

B Zipfian 95%Get，5%Update

C Zipfian 100%Get

D Latest 95%Get，5%Put

E Zipfain/Uniform 95%Scan，5%Put

F Zipfian 50%Put，50%RMW

Operation Efficiency

Throughput on the YCSB workloads

B+Tree node is 512B
DRAM cache size is 500MB

Load
 Better than FAST&FAIR

write more (A、F)
 improvement small

Read more (B、C、D or E）
 Better

Performance with Hotness Data

Throughput under different data hotspots

Recovry Time

Recovery time for HBTree and FPTree in various data volumes

 When the data volume is small
 HBTree is closer to FPTree

With the increasing data
 HBTree remains level

 FPTree is still increasing

 30%

Recovry Time

Recovery time for different threads of HBTree

Thanks listening
Yuanhui Zhou zhouyuanhui@hust.edu.cn

Taotao Sheng

Jiguang Wan* jgwan@hust.edu.cn

	HBTree: an Efficient Index Structure Based on�Hybrid DRAM-NVM
	幻灯片编号 2
	幻灯片编号 3
	Background – Persistent Memory
	Background – Indexing structures
	幻灯片编号 6
	motivation
	Operational Efficiency
	Recovery Time
	幻灯片编号 10
	Design ideas
	Overall Architecture of HBTree
	Hotspot Statistica Algorithm
	LogTrees
	Dynamic Extension
	CacheTree Management
	Consistency
	Recovery
	幻灯片编号 19
	Evaluation methodology
	Operation Efficiency
	Performance with Hotness Data
	Recovry Time
	Recovry Time
	Thanks listening

