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Background – Persistent Memory

 Emerging Npn-Volatile Memories(NVMs)
 PCM, STT-MRAM, RRAM

 Characteristics of NVM

Optane DC PMM
 first 3D X-Point persistent memory (PM) product

 low latency
 non-volatility
 low power consumption

 high storage capacity
 byte addressing



Background – Indexing structures

Conventional indexing structures  not suitable NVM

Optimizing indexing structures for NVM based on conventional indexes

 Optimize a single index structure to accommodate full NVM memory

 Path Hash，Leveling Hash，NV-Tree ……

 reduce the consistency overhead on NVM and speeds up failure recovery

 FAST&FAIR，wB+Tree，CDDS-Tree……

 study hybrid structure and use DRAM to optimize system performance 

 FPTree，HiKV，LB+Tree……
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motivation

 B+Tree more suit NVM
 Simple structure
 Excellent Scan performance
 Random Read and Write

 DRAM-NVM 

 Challenges
Data consistency
 Insert and Split overhead
Recovery time 



Operational Efficiency

Rich KV operations
— Load/Put/Get/Delete

 observe 
DRAM-B+Tree（No persistence)
>  DRAM-B+Tree-log (log big)

> FPTree
>  FAST&FAIR 

How to take advantage of the DRAM-NVM hybrid structure



Recovery Time

How to reduce the recovery time?

How to reduce the log？

Make some data into NVM Recover time for FPTree and DRAM-B+Tree-Log
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Design ideas

 B+ tree index structure with DRAM-NVM hybrid Memory

Cache hot data in DRAM to improve performance

ensure data consistency 

speed up the system failure recovery



Overall Architecture of HBTree

 HBTree: a hybrid three-layer persistent index

Index layer
 a B+tree on DRAM
 Does not persistent 

Middle layer

 Data layer



Hotspot Statistica Algorithm

 HBTree: a hybrid three-layer persistent index

 Index layer 

Middle layer
 Stores LogTree metadata
 Identify hot NVMTree

T(t+∆t) = A* Tt + Operate ∆t

A default 0.5

 backup to NVM

 Data layer 



LogTrees

 HBTree: a hybrid three-layer persistent index

 Index layer 
Middle layer 

Data layer 
 Data persistence

 Fast recovery
 Highspeed access
 Consistency



Dynamic Extension



CacheTree Management

 CacheTree Create
 Copy NVMTree to DRAM to generate CacheTree

 Write operation is recorded in a log
 The read request first looks for the log and then the NVMTree

 Log be played back to CacheTree

CacheTree Syschronization
 Only data marked dirty is synchronized
 Old log is replaced by new log 

CacheTree Recycle
 Read paused and update dirty data to NVMTree
 Release CacheTree nodes and log record to replay
 NVMTree work and delete log 



Consistency

 Copy-on-write
 NVMTree: over 8B write 
 CacheTree Syschronization and CacheTree Recycle

The log is exploited to ensure consistency



Recovery

 Middle layer Recovery
 traversing the persistent metadata node linked list in NVM
 The NVMTree in the split continues  

 LogTree Recovery
 Playback logs ensure the integrity of the NVMTree
 Create CacheTree based on middle layer hot data information
 Playback logs to recovery CacheTree

 The index layer  be recreated directly through the middle layer

NOTE: 
CacheTree recovery within different LogTrees can be performed concurrently
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Evaluation methodology

 Platform:
 CPU:     two 24-core Intel Xeon Gold 5218R CPUs(2.3GHz)
 DRAM:  DDR4 64GB 
 OS： linux (kernel version 5.10.1)
 NVM:     Intel Optane DC Persistent Memory 128G * 2

Workloads
YCSB： 8B key, 8B value

Load: 200 million,  others: 10 million

Compared systems：
 FPTree
 FAST&FIRE

Worklaods Requestdistribution Op

Load Uniform 100% Put

A Zipfian 50%Get，50%Update

B Zipfian 95%Get，5%Update

C Zipfian 100%Get

D Latest 95%Get，5%Put

E Zipfain/Uniform 95%Scan，5%Put

F Zipfian 50%Put，50%RMW



Operation Efficiency

Throughput on the YCSB workloads

B+Tree node is 512B 
DRAM cache size is 500MB

Load
 Better than FAST&FAIR

write more (A、F)
 improvement small

Read more (B、C、D or E）
 Better 



Performance with Hotness Data

Throughput under different data hotspots



Recovry Time

Recovery time for HBTree and FPTree in various data volumes

 When the data volume is small
 HBTree is closer to FPTree

With the increasing data 
 HBTree remains level

 FPTree is still increasing

 30%  



Recovry Time

Recovery time for different threads of HBTree



Thanks listening
Yuanhui Zhou    zhouyuanhui@hust.edu.cn       
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