
HBTree: an Efficient Index Structure Based on

Hybrid DRAM-NVM

Yuanhui Zhou1, Taotao Sheng1, Jiguang Wan*1,2

1. WNLO，Huazhong University of Science and Technology, Wuhan,Hubei, China

2. Shenzhen Huazhong University of Science and Technology Research Institute

NVMSA 2021

目录
CONTENTS

04

03

02

01

Evaluation

Design of HBTree

Motivation

Background

Background

01

Background – Persistent Memory

 Emerging Npn-Volatile Memories(NVMs)
 PCM, STT-MRAM, RRAM

 Characteristics of NVM

Optane DC PMM
 first 3D X-Point persistent memory (PM) product

 low latency
 non-volatility
 low power consumption

 high storage capacity
 byte addressing

Background – Indexing structures

Conventional indexing structures not suitable NVM

Optimizing indexing structures for NVM based on conventional indexes

 Optimize a single index structure to accommodate full NVM memory

 Path Hash，Leveling Hash，NV-Tree ……

 reduce the consistency overhead on NVM and speeds up failure recovery

 FAST&FAIR，wB+Tree，CDDS-Tree……

 study hybrid structure and use DRAM to optimize system performance

 FPTree，HiKV，LB+Tree……

Motivation

02

motivation

 B+Tree more suit NVM
 Simple structure
 Excellent Scan performance
 Random Read and Write

 DRAM-NVM

 Challenges
Data consistency
 Insert and Split overhead
Recovery time

Operational Efficiency

Rich KV operations
— Load/Put/Get/Delete

 observe
DRAM-B+Tree（No persistence)
> DRAM-B+Tree-log (log big)

> FPTree
> FAST&FAIR

How to take advantage of the DRAM-NVM hybrid structure

Recovery Time

How to reduce the recovery time?

How to reduce the log？

Make some data into NVM Recover time for FPTree and DRAM-B+Tree-Log

Design

03

Design ideas

 B+ tree index structure with DRAM-NVM hybrid Memory

Cache hot data in DRAM to improve performance

ensure data consistency

speed up the system failure recovery

Overall Architecture of HBTree

 HBTree: a hybrid three-layer persistent index

Index layer
 a B+tree on DRAM
 Does not persistent

Middle layer

 Data layer

Hotspot Statistica Algorithm

 HBTree: a hybrid three-layer persistent index

 Index layer

Middle layer
 Stores LogTree metadata
 Identify hot NVMTree

T(t+∆t) = A* Tt + Operate ∆t

A default 0.5

 backup to NVM

 Data layer

LogTrees

 HBTree: a hybrid three-layer persistent index

 Index layer
Middle layer

Data layer
 Data persistence

 Fast recovery
 Highspeed access
 Consistency

Dynamic Extension

CacheTree Management

 CacheTree Create
 Copy NVMTree to DRAM to generate CacheTree

 Write operation is recorded in a log
 The read request first looks for the log and then the NVMTree

 Log be played back to CacheTree

CacheTree Syschronization
 Only data marked dirty is synchronized
 Old log is replaced by new log

CacheTree Recycle
 Read paused and update dirty data to NVMTree
 Release CacheTree nodes and log record to replay
 NVMTree work and delete log

Consistency

 Copy-on-write
 NVMTree: over 8B write
 CacheTree Syschronization and CacheTree Recycle

The log is exploited to ensure consistency

Recovery

 Middle layer Recovery
 traversing the persistent metadata node linked list in NVM
 The NVMTree in the split continues

 LogTree Recovery
 Playback logs ensure the integrity of the NVMTree
 Create CacheTree based on middle layer hot data information
 Playback logs to recovery CacheTree

 The index layer be recreated directly through the middle layer

NOTE:
CacheTree recovery within different LogTrees can be performed concurrently

Evaluation

04

Evaluation methodology

 Platform:
 CPU: two 24-core Intel Xeon Gold 5218R CPUs(2.3GHz)
 DRAM: DDR4 64GB
 OS： linux (kernel version 5.10.1)
 NVM: Intel Optane DC Persistent Memory 128G * 2

Workloads
YCSB： 8B key, 8B value

Load: 200 million, others: 10 million

Compared systems：
 FPTree
 FAST&FIRE

Worklaods Requestdistribution Op

Load Uniform 100% Put

A Zipfian 50%Get，50%Update

B Zipfian 95%Get，5%Update

C Zipfian 100%Get

D Latest 95%Get，5%Put

E Zipfain/Uniform 95%Scan，5%Put

F Zipfian 50%Put，50%RMW

Operation Efficiency

Throughput on the YCSB workloads

B+Tree node is 512B
DRAM cache size is 500MB

Load
 Better than FAST&FAIR

write more (A、F)
 improvement small

Read more (B、C、D or E）
 Better

Performance with Hotness Data

Throughput under different data hotspots

Recovry Time

Recovery time for HBTree and FPTree in various data volumes

 When the data volume is small
 HBTree is closer to FPTree

With the increasing data
 HBTree remains level

 FPTree is still increasing

 30%

Recovry Time

Recovery time for different threads of HBTree

Thanks listening
Yuanhui Zhou zhouyuanhui@hust.edu.cn

Taotao Sheng

Jiguang Wan* jgwan@hust.edu.cn

	HBTree: an Efficient Index Structure Based on�Hybrid DRAM-NVM
	幻灯片编号 2
	幻灯片编号 3
	Background – Persistent Memory
	Background – Indexing structures
	幻灯片编号 6
	motivation
	Operational Efficiency
	Recovery Time
	幻灯片编号 10
	Design ideas
	Overall Architecture of HBTree
	Hotspot Statistica Algorithm
	LogTrees
	Dynamic Extension
	CacheTree Management
	Consistency
	Recovery
	幻灯片编号 19
	Evaluation methodology
	Operation Efficiency
	Performance with Hotness Data
	Recovry Time
	Recovry Time
	Thanks listening

