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Big Data Market Forecast Worldwide 
from 2011 to 2026
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Observation
Ø GPUs are widely used to accelerate these data-intensive 

big data applications, such as computer graphic and deep 
learning

Ø These applications also need a huge DRAM size of GPU 
device to as the temporary storage for data models 

Ø The growth rate of the required memory size of 
applications is higher than the process technology of 
DRAM
– High leakage power with huge DRAM size
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Observation
Ø NVIDIA provides Unified Memory Architecture (memories 

of Host and GPU inside the same address space)
– Reducing the complexity of writing the CUDA program (programmers do 

not need to consider the data movement between Host and GPU device)
– Ultra-scale memory drive with high access latency is not considered

Ø The new interface “RDMA” between the PCIe device and 
GPU device is provided to reduce the loading of host

Ø GPU is data parallelism, not task parallelism, and the 
segments of the program are decided to perform by the 
internal warp schedulers. The programmer and host are 
difficult to catch or create the data access locality.
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The Complex Data Movement among Host, GPU 
Device, and PCIe SSD
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Motivation
Ø Performance degradation

– Although GPUs can directly access PCIe SSD without moving 
the data to host DRAM beforehand, it leads to serious 
performance degradation due to the large performance gap 
between the PCIe SSD and the off-chip DRAM in the GPUs

– How to pre-fetch the data between DRAM and Flash Memory?
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Type DRAM Flash SLC
Read time 60 ns 50 us

Write time 60 ns 550 us
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System Architecture
Ø Without modifying the host design (e.g., GPU device driver) and the 

programming way of the programmer
– A new component Memory Manager is needed to coordinate between DRAM and SSD with 

considering the warp schedulers
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Internal GPU Information -- Warp Scheduling
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Internal GPU Information -- Warp Scheduling
(cont.)
Ø The instructions are issued and executed per warp, 

and memory operations are also issued per warp
– When executing a memory instruction, each thread in a warp 

provides a memory address which is loading or storing

Ø Memory Behavior Tracking
– Warp = 32 threads
– The required memory addresses of threads in a warp are 

continuous
– The memory request unit at once is based on the warp
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Internal GPU Information -- Warp Scheduling
(cont.)
Ø When op_code of the warp in warp scheduler is LOAD or STORE, 

the required memory addresses will notify Memory Manager
Ø When data of the accessed memory addresses are missing in 

DRAM, Memory Manager uses warp scheduler information to 
pre-fetch data to DRAM

miss !

miss !!

prefetch !

prefetch !!
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Experiment Setup

Benchmarks
ISPASS2009-benchmarks – AES, BFS, CP, LPS, MUM, and NN
Memory Trace and Warp Scheduler Information are collected by the modified 
GPGPU-Sim

Type Access Latency
DRAM Random Access Latency (Read/Write) 60 ns
Flash Memory Random Access Latency (Read) 50,000 ns
Flash Memory Random Access Latency (Write) 550,000 ns
Flash Memory Serial Access Time (ns/Bytes) 5 ns

Evaluated Unified Memory

Compared Strategies: LRU and FIFO
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Source: https://github.com/gpgpu-sim/
https://github.com/gpgpu-sim/ispass2009-benchmarks 



The performance of LRU algorithm is same to FIFO algorithm
DRAM Hit Ratio on Different DRAM Size with Different Policy

The performance of LRU algorithm is higher/lower thanFIFO algorithm

LRU algorithm is not suitable to manage the GPU Memory

AES

BFS LPS

CP
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Effective Access Time
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Effective Access Time (cont.)
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Effective Access Time (cont.)
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Conclusion
Ø We proposed a scheduling-aware prefetching design in 

Unified Memory for GPU Device to exploit the process 
information provided by the warp scheduler so as to 
predict memory access patterns and perform accurate 
data prefetching

Ø The experiment results show that scheduling-aware 
prefetching design can efficiently improve the DRAM 
cache hit ratio

Ø The proposed scheduling-aware prefetching design can 
improve up to 99% of effective access time compared to 
LRU algorithm.
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