
Tse-Yuan Wang1,2 , Chun-Feng Wu1,2 , Che-Wei Tsao1,2 , Yuan-Hao Chang2 , 
and Tei-Wei Kuo1,3

1Department of Computer Science and Information Engineering, National Taiwan University, 
2 Institute of Information Science, Academia Sinica

3Hong Kong Institute for Advanced Study, Department of Computer Science, City University of 
Hong Kong, Kowloon, Hong Kong 

1

Scheduling-Aware Prefetching: Enabling the 
PCIe SSD to Extend the Global Memory of 

GPU Device 



Outline

Ø Background and Motivation

Ø Scheduling-Aware Prefetching
Ø Performance Evaluation

Ø Conclusion

2



Big Data Market Forecast Worldwide 
from 2011 to 2026

Source: https://www.forbes.com/sites/louiscolumbus/2018/05/23/10-charts-that-will-change-your-perspective-of-big-datas-growth/#39a38dbf2926 3



Observation
Ø GPUs are widely used to accelerate these data-intensive 

big data applications, such as computer graphic and deep 
learning

Ø These applications also need a huge DRAM size of GPU 
device to as the temporary storage for data models 

Ø The growth rate of the required memory size of 
applications is higher than the process technology of 
DRAM
– High leakage power with huge DRAM size

4



Observation
Ø NVIDIA provides Unified Memory Architecture (memories 

of Host and GPU inside the same address space)
– Reducing the complexity of writing the CUDA program (programmers do 

not need to consider the data movement between Host and GPU device)
– Ultra-scale memory drive with high access latency is not considered

Ø The new interface “RDMA” between the PCIe device and 
GPU device is provided to reduce the loading of host

Ø GPU is data parallelism, not task parallelism, and the 
segments of the program are decided to perform by the 
internal warp schedulers. The programmer and host are 
difficult to catch or create the data access locality.

5



The Complex Data Movement among Host, GPU 
Device, and PCIe SSD

6

GPU Card
Cores

DRAM
Cache

PCI-E SSD

Extended 
Memory 

(Flash Memory)

CPU Main Memory

NVLink

(4)

Memory Expansion

(1)(2) (3)

(1,2)



Motivation
Ø Performance degradation

– Although GPUs can directly access PCIe SSD without moving 
the data to host DRAM beforehand, it leads to serious 
performance degradation due to the large performance gap 
between the PCIe SSD and the off-chip DRAM in the GPUs

– How to pre-fetch the data between DRAM and Flash Memory?

7

Type DRAM Flash SLC
Read time 60 ns 50 us

Write time 60 ns 550 us



Outline

Ø Background and Motivation

Ø Scheduling-Aware Prefetching
Ø Performance Evaluation

Ø Conclusion

8



L2 Cache 

DRAM

Extended Memory (Flash Memory)PCIe
SSD

Memory Manager

SM (Streaming Multiprocessor)
GPU

SM...

Warp 
Scheduler

Core
(SP)

Core
(SP)...

L1 Cache 

Kernel

CUDA/OpenCL
Runtime Library

(Thread Blocks, 
Threads)

GPU Device Driver

Warp Scheduler

Thread ...
Warp

Black Box

Thread Thread...
Core
(SP)

Core
(SP)

Warp

Internal GPU Information -- Warp SchedulerHost Information

System Architecture
Ø Without modifying the host design (e.g., GPU device driver) and the 

programming way of the programmer
– A new component Memory Manager is needed to coordinate between DRAM and SSD with 

considering the warp schedulers

9



Internal GPU Information -- Warp Scheduling

L2 Cache 

DRAM

Extended Memory 
(Flash Memory)

Memory Manager

SM (Streaming Multiprocessor)
GPU

SM...

Warp 
Scheduler

Core
(SP)

Core
(SP)

...
L1 Cache 

Warp Scheduler
Thread Thread...

Core
(SP)

Core
(SP)

Warp

PCIe SSD

Recording the 
required memory 
addresses by warp 
scheduler

10



Internal GPU Information -- Warp Scheduling
(cont.)
Ø The instructions are issued and executed per warp, 

and memory operations are also issued per warp
– When executing a memory instruction, each thread in a warp 

provides a memory address which is loading or storing

Ø Memory Behavior Tracking
– Warp = 32 threads
– The required memory addresses of threads in a warp are 

continuous
– The memory request unit at once is based on the warp

11



Internal GPU Information -- Warp Scheduling
(cont.)
Ø When op_code of the warp in warp scheduler is LOAD or STORE, 

the required memory addresses will notify Memory Manager
Ø When data of the accessed memory addresses are missing in 

DRAM, Memory Manager uses warp scheduler information to 
pre-fetch data to DRAM

miss !

miss !!

prefetch !

prefetch !!

12



Outline

Ø Background and Motivation

Ø Scheduling-Aware Prefetching
Ø Performance Evaluation

Ø Conclusion

13



Experiment Setup

Benchmarks
ISPASS2009-benchmarks – AES, BFS, CP, LPS, MUM, and NN
Memory Trace and Warp Scheduler Information are collected by the modified 
GPGPU-Sim

Type Access Latency
DRAM Random Access Latency (Read/Write) 60 ns
Flash Memory Random Access Latency (Read) 50,000 ns
Flash Memory Random Access Latency (Write) 550,000 ns
Flash Memory Serial Access Time (ns/Bytes) 5 ns

Evaluated Unified Memory

Compared Strategies: LRU and FIFO

14

Source: https://github.com/gpgpu-sim/
https://github.com/gpgpu-sim/ispass2009-benchmarks 



The performance of LRU algorithm is same to FIFO algorithm
DRAM Hit Ratio on Different DRAM Size with Different Policy

The performance of LRU algorithm is higher/lower thanFIFO algorithm

LRU algorithm is not suitable to manage the GPU Memory

AES

BFS LPS

CP

15



Effective Access Time

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

1M 8M 128M 1536M

EA
T

DRAM Size

AES

Improve 22% 

0

50000000

100000000

150000000

200000000

250000000

1M 8M 128M 1536M

EA
T

DRAM Size 

BFS

Improve 24.4% 

Improve 26.6 % 

16



Effective Access Time (cont.)

3000000
3100000
3200000
3300000
3400000
3500000
3600000
3700000
3800000
3900000
4000000
4100000

1M 8M 128M 1536M

EA
T

DRAM Size

CP

Improve 17.8% 

0

20000000

40000000

60000000

80000000

100000000

120000000

140000000

160000000

1M 8M 128M 1536M

EA
T

DRAM Size

LPS

Improve 8% 
Improve 12.8% 

17



Effective Access Time (cont.)

0

50000000

100000000

150000000

200000000

250000000

300000000

1M 8M 128M 1536M

EA
T

DRAM Size

MUM

Improve 6% 

Improve 28.6% 

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

1M 8M 128M 1536M

EA
T

DRAM Size

NN

Improve 99.98% 

18



Outline

Ø Background and Motivation

Ø Scheduling-Aware Prefetching
Ø Performance Evaluation

Ø Conclusion

19



Conclusion
Ø We proposed a scheduling-aware prefetching design in 

Unified Memory for GPU Device to exploit the process 
information provided by the warp scheduler so as to 
predict memory access patterns and perform accurate 
data prefetching

Ø The experiment results show that scheduling-aware 
prefetching design can efficiently improve the DRAM 
cache hit ratio

Ø The proposed scheduling-aware prefetching design can 
improve up to 99% of effective access time compared to 
LRU algorithm.

20



21

Thanks for your attention

Q&A
Contact: Tse-Yuan Wang – tseyuan20@iis.sinica.edu.tw 


