
OCTO+: Optimized Checkpointing of B+ Trees
for Non-Volatile Main Memory Wear-Leveling

Christian Hakert, Roland Kühn, Kuan-Hsun Chen, Jens Teubner, Jian-Jia Chen

Department of Computer Science, Chair 12 / Chair 6
TU Dortmund University, Germany

August, 19 2021
The 10th IEEE Non-Volatile Memory Systems and Applications Symposium August 18-20,

2021, Virtual Conference

This research is supported in parts by the German Research Foundation (DFG) as part of OneMemory

and SFB 876, subprojects A1 and A2

Christian Hakert (TU Dortmund) 1 / 9



Wear-Leveling and Applications

Application

WL system

Memory

⇔

Application

WL system

Memory

Take the application in!

• Efficiently collect domain specific memory knowledge

• Exploit application structure for efficient WL

⇒ Specific WL for B+ Trees

Christian Hakert (TU Dortmund) 2 / 9



Wear-Leveling and Applications

Application

WL system

Memory

⇔

Application

WL system

Memory

Take the application in!

• Efficiently collect domain specific memory knowledge

• Exploit application structure for efficient WL

⇒ Specific WL for B+ Trees

Christian Hakert (TU Dortmund) 2 / 9



Wear-Leveling and Applications

Application

WL system

Memory

⇔

Application

WL system

Memory

Take the application in!

• Efficiently collect domain specific memory knowledge

• Exploit application structure for efficient WL

⇒ Specific WL for B+ Trees

Christian Hakert (TU Dortmund) 2 / 9



Wear-Leveling and Applications

Application

WL system

Memory

⇔

Application

WL system

Memory

Take the application in!

• Efficiently collect domain specific memory knowledge

• Exploit application structure for efficient WL

⇒ Specific WL for B+ Trees

Christian Hakert (TU Dortmund) 2 / 9



Wear-Leveling and Applications

Application

WL system

Memory

⇔

Application

WL system

Memory

Take the application in!

• Efficiently collect domain specific memory knowledge

• Exploit application structure for efficient WL

⇒ Specific WL for B+ Trees

Christian Hakert (TU Dortmund) 2 / 9



Outline

System Setup

B+ Trees / Write Information Collection

OCTO+ Wear-Leveling

Evaluation

Takeaways

Christian Hakert (TU Dortmund) 3 / 9



System Setup

Iterative write scheme:

• Popular for PCM

• Sense cell before update

• ⇒ no write on unchanged value

00000000 ; 11111111

vs.

00101100 ; 00111100

; 00111110 ; 00111111

Expensive data migration!

Checkpointing:

• Keep data in VM
• Regularly copy checkpoint to NVM
• Utilize non-volatiliy + low DRAM

latency

Mapping between VM memory and NVM
checkpoint:

Easy to modify between checkpoints!

Christian Hakert (TU Dortmund) 4 / 9



System Setup

Iterative write scheme:

• Popular for PCM

• Sense cell before update

• ⇒ no write on unchanged value

00000000 ; 11111111

vs.

00101100 ; 00111100

; 00111110 ; 00111111

Expensive data migration!

Checkpointing:

• Keep data in VM
• Regularly copy checkpoint to NVM
• Utilize non-volatiliy + low DRAM

latency

Mapping between VM memory and NVM
checkpoint:

Easy to modify between checkpoints!

Christian Hakert (TU Dortmund) 4 / 9



System Setup

Iterative write scheme:

• Popular for PCM

• Sense cell before update

• ⇒ no write on unchanged value

00000000 ; 11111111

vs.

00101100 ; 00111100

; 00111110 ; 00111111

Expensive data migration!

Checkpointing:

• Keep data in VM
• Regularly copy checkpoint to NVM
• Utilize non-volatiliy + low DRAM

latency

Mapping between VM memory and NVM
checkpoint:

Easy to modify between checkpoints!

Christian Hakert (TU Dortmund) 4 / 9



System Setup

Iterative write scheme:

• Popular for PCM

• Sense cell before update

• ⇒ no write on unchanged value

00000000 ; 11111111

vs.

00101100 ; 00111100

; 00111110 ; 00111111

Expensive data migration!

Checkpointing:

• Keep data in VM
• Regularly copy checkpoint to NVM
• Utilize non-volatiliy + low DRAM

latency

Mapping between VM memory and NVM
checkpoint:

Easy to modify between checkpoints!

Christian Hakert (TU Dortmund) 4 / 9



System Setup

Iterative write scheme:

• Popular for PCM

• Sense cell before update

• ⇒ no write on unchanged value

00000000 ; 11111111

vs.

00101100 ; 00111100

; 00111110 ; 00111111

Expensive data migration!

Checkpointing:

• Keep data in VM
• Regularly copy checkpoint to NVM
• Utilize non-volatiliy + low DRAM

latency

Mapping between VM memory and NVM
checkpoint:

Easy to modify between checkpoints!

Christian Hakert (TU Dortmund) 4 / 9



B+ Trees / Write Information Collection

• Sorted split values and child pointers
• B+ Tree nodes consume one NVM block while checkpointing

Node 0

p0 p1 . . .k0 . . . knHeader

Node 1

p0 p1 . . .k0 . . . knHeader

Node 2

p0 p1 . . .k0 . . . knHeader

...

• Tree modification knows changed keys / pointers
• Maintain a Node Modification Mask (NMM)
• Bitmask indicating modified parts of nodes
• Reset at checkpoints

Christian Hakert (TU Dortmund) 5 / 9



B+ Trees / Write Information Collection

• Sorted split values and child pointers
• B+ Tree nodes consume one NVM block while checkpointing

Node 0

p0 p1 . . .k0 . . . knHeader NMM

Node 1

p0 p1 . . .k0 . . . knHeader NMM

Node 2

p0 p1 . . .k0 . . . knHeader NMM

...

• Tree modification knows changed keys / pointers
• Maintain a Node Modification Mask (NMM)
• Bitmask indicating modified parts of nodes
• Reset at checkpoints

Christian Hakert (TU Dortmund) 5 / 9



OCTO+ Wear-Leveling

Abstract logical (application) memory and physical memory:
B
+

T
re

e
n

o
d

es

Keep track of:
• B+ Node Modification (NMM)
• Short term usage of logic memory

• NVM Block Age
• Long term utilization of physical memory
• Accumulation of mapped B+ Tree NMMs

N
V

M
b

lo
ck

s

Christian Hakert (TU Dortmund) 6 / 9



OCTO+ Wear-Leveling

Abstract logical (application) memory and physical memory:
B
+

T
re

e
n

o
d

es

Keep track of:
• B+ Node Modification (NMM)
• Short term usage of logic memory

• NVM Block Age
• Long term utilization of physical memory
• Accumulation of mapped B+ Tree NMMs

• Encode both as bitmasks
• 1 if region was modified since the last

checkpoint
• 1 if accumulated count of region is higher

than the average within the block
(+threshold)

N
V

M
b

lo
ck

s

Christian Hakert (TU Dortmund) 6 / 9



OCTO+ Wear-Leveling

Abstract logical (application) memory and physical memory:
B
+

T
re

e
n

o
d

es

0
0
0
0
1
1
0
1

0
0
1
1
0
1
1
0

0
0
1
0
0
0
0
0

Keep track of:
• B+ Node Modification (NMM)
• Short term usage of logic memory

• NVM Block Age
• Long term utilization of physical memory
• Accumulation of mapped B+ Tree NMMs

• Encode both as bitmasks
• 1 if region was modified since the last

checkpoint
• 1 if accumulated count of region is higher

than the average within the block
(+threshold)

N
V

M
b

lo
ck

s

0
0
1
0
0
1
1
0

1
0
0
1
1
0
1
0

1
0
0
1
0
0
0
0

Christian Hakert (TU Dortmund) 6 / 9



OCTO+ Wear-Leveling (cont.)

Intra-Block WL:

1 Start from the current checkpoint
mapping, build bitmaps

2 Release all NVM blocks, which are
not 00000000 → results in n free
NVM blocks and n unmapped B+

tree nodes

3 Re-Shuffle the mapping:

Christian Hakert (TU Dortmund) 7 / 9



OCTO+ Wear-Leveling (cont.)

Intra-Block WL:

1 Start from the current checkpoint
mapping, build bitmaps

2 Release all NVM blocks, which are
not 00000000 → results in n free
NVM blocks and n unmapped B+

tree nodes

3 Re-Shuffle the mapping:

Christian Hakert (TU Dortmund) 7 / 9



OCTO+ Wear-Leveling (cont.)

Intra-Block WL:

1 Start from the current checkpoint
mapping, build bitmaps

2 Release all NVM blocks, which are
not 00000000 → results in n free
NVM blocks and n unmapped B+

tree nodes

3 Re-Shuffle the mapping:

00100110

+

Christian Hakert (TU Dortmund) 7 / 9



OCTO+ Wear-Leveling (cont.)

Intra-Block WL:

1 Start from the current checkpoint
mapping, build bitmaps

2 Release all NVM blocks, which are
not 00000000 → results in n free
NVM blocks and n unmapped B+

tree nodes

3 Re-Shuffle the mapping:

00001101

11110010

-

Christian Hakert (TU Dortmund) 7 / 9



OCTO+ Wear-Leveling (cont.)

Intra-Block WL:

1 Start from the current checkpoint
mapping, build bitmaps

2 Release all NVM blocks, which are
not 00000000 → results in n free
NVM blocks and n unmapped B+

tree nodes

3 Re-Shuffle the mapping:

Inter-Block WL:

1 Track youngest and oldest NVM
block (min / max amount of writes
to subblocks)

2 If both have uneven intra block WL,
exchange logic mapping

3 Youngest / Oldest block are excluded
from subsequent checkpoint
remapping

Christian Hakert (TU Dortmund) 7 / 9



Evaluation

• Execute full implementation in full system simulation

• 3 B+ Tree benchmarks (+3 insert/update ratios)

Christian Hakert (TU Dortmund) 8 / 9



Evaluation

• Execute full implementation in full system simulation

• 3 B+ Tree benchmarks (+3 insert/update ratios)

Lifetime Improvement (small - 20k Ops.)

OCTO+ AA RANDOM RING

11

2
.2
1

2
.2
1

2
.2
1

2
.2
1

0
.1
5

0
.1
5

0
.0
8

0
.0
8

2
.2
1

2
.2
1

2
.2
1

2
.2
1

0
.1
6

0
.1
6

0
.0
8

0
.0
8

3
.1
0

3
.1
0

3
.1
0

3
.1
0

0
.1
5

0
.1
5

0
.0
8

0
.0
8

1
.6
9

1
.6
9

1
.1
7

1
.1
7

0
.4
9

0
.4
9

0
.2
7

0
.2
7

1
.6
4

1
.6
4

1
.0
0

1
.0
0

0
.4
9

0
.4
9

0
.2
4

0
.2
4

1
.6
5

1
.6
5

1
.3
4

1
.3
4

0
.5
3

0
.5
3

0
.2
5

0
.2
5

1
.2
4

1
.2
4

1
.1
6

1
.1
6

0
.4
0

0
.4
0

0
.2
7

0
.2
7

1
.1
3

1
.1
3

1
.1
4

1
.1
4

0
.3
4

0
.3
4

0
.2
3

0
.2
3

0
.9
5

0
.9
5

1
.0
2

1
.0
2

0
.2
8

0
.2
8

0
.1
8

0
.1
8

100/0 linear 75/25 linear 50/50 linear

100/0 random 75/25 random 50/50 random

100/0 ycsb 75/25 ycsb 50/50 ycsb

Wear-Leveling Potential (small - 20k Ops.)

OCTO+ AA RANDOM RING

11

1
.1
2

1
.1
2

1
.1
2

1
.1
2

0
.0
3

0
.0
3

0
.0
2

0
.0
2

1
.1
0

1
.1
0

1
.1
0

1
.1
0

0
.0
3

0
.0
3

0
.0
2

0
.0
2

1
.0
8

1
.0
8

1
.0
8

1
.0
8

0
.0
2

0
.0
2

0
.0
1

0
.0
1

1
.4
2

1
.4
2

1
.0
2

1
.0
2

0
.3
1

0
.3
1

0
.0
4

0
.0
4

1
.3
8

1
.3
8

1
.0
2

1
.0
2

0
.3
1

0
.3
1

0
.0
4

0
.0
4

1
.2
7

1
.2
7

1
.0
4

1
.0
4

0
.3
1

0
.3
1

0
.0
4

0
.0
4

1
.2
8

1
.2
8

1
.0
5

1
.0
5

0
.3
6

0
.3
6

0
.0
6

0
.0
6

1
.1
8

1
.1
8

1
.0
4

1
.0
4

0
.3
5

0
.3
5

0
.0
4

0
.0
4

0
.9
4

0
.9
4

1
.0
2

1
.0
2

0
.2
2

0
.2
2

0
.0
2

0
.0
2

100/0 linear 75/25 linear 50/50 linear

100/0 random 75/25 random 50/50 random

100/0 ycsb 75/25 ycsb 50/50 ycsb

Christian Hakert (TU Dortmund) 8 / 9



Evaluation

• Execute full implementation in full system simulation

• 3 B+ Tree benchmarks (+3 insert/update ratios)

Lifetime Improvement (big - 50k Ops.)

OCTO+ AA

11

1
.4
1

1
.4
1

1
.5
0

1
.5
01

.7
3

1
.7
3

1
.1
9

1
.1
9

1
.5
7

1
.5
7

1
.1
2

1
.1
2

1
.7
1

1
.7
1

1
.0
8

1
.0
8

1
.3
3

1
.3
3

1
.0
7

1
.0
71
.2
0

1
.2
0

1
.0
9

1
.0
9

1
.0
8

1
.0
8

1
.0
5

1
.0
5

50/50 linear

100/0 random

75/25 random

50/50 random

100/0 ycsb

75/25 ycsb

50/50 ycsb

Wear-Leveling Potential (big - 50k Ops.)

OCTO+ AA

11

1
.0
4

1
.0
4

1
.0
5

1
.0
5

1
.4
6

1
.4
6

1
.0
2

1
.0
2

1
.3
7

1
.3
7

1
.0
2

1
.0
2

1
.2
8

1
.2
8

1
.0
1

1
.0
1

1
.2
5

1
.2
5

1
.0
2

1
.0
2

1
.0
9

1
.0
9

1
.0
3

1
.0
3

0
.8
5

0
.8
5 1

.0
2

1
.0
2

50/50 linear

100/0 random

75/25 random

50/50 random

100/0 ycsb

75/25 ycsb

50/50 ycsb

Christian Hakert (TU Dortmund) 8 / 9



Takeaways

• Applications rarely explicitly taken into wear-leveling

• Extend the application itself to track aging information

• Hook into checkpointing for low overhead wear-leveling

⇒ Careful wear-leveling for iterative write schemes required

⇒ Improved memory lifetime and aided wear-leveling beyond application scope

Thank You!
Questions? ⇒ christian.hakert@tu-dortmund.de /

roland.kuehn@cs.tu-dortmund.de

Christian Hakert (TU Dortmund) 9 / 9

christian.hakert@tu-dortmund.de
roland.kuehn@cs.tu-dortmund.de


Takeaways

• Applications rarely explicitly taken into wear-leveling

• Extend the application itself to track aging information

• Hook into checkpointing for low overhead wear-leveling

⇒ Careful wear-leveling for iterative write schemes required

⇒ Improved memory lifetime and aided wear-leveling beyond application scope

Thank You!
Questions? ⇒ christian.hakert@tu-dortmund.de /

roland.kuehn@cs.tu-dortmund.de

Christian Hakert (TU Dortmund) 9 / 9

christian.hakert@tu-dortmund.de
roland.kuehn@cs.tu-dortmund.de


Takeaways

• Applications rarely explicitly taken into wear-leveling

• Extend the application itself to track aging information

• Hook into checkpointing for low overhead wear-leveling

⇒ Careful wear-leveling for iterative write schemes required

⇒ Improved memory lifetime and aided wear-leveling beyond application scope

Thank You!
Questions? ⇒ christian.hakert@tu-dortmund.de /

roland.kuehn@cs.tu-dortmund.de

Christian Hakert (TU Dortmund) 9 / 9

christian.hakert@tu-dortmund.de
roland.kuehn@cs.tu-dortmund.de


Takeaways

• Applications rarely explicitly taken into wear-leveling

• Extend the application itself to track aging information

• Hook into checkpointing for low overhead wear-leveling

⇒ Careful wear-leveling for iterative write schemes required

⇒ Improved memory lifetime and aided wear-leveling beyond application scope

Thank You!
Questions? ⇒ christian.hakert@tu-dortmund.de /

roland.kuehn@cs.tu-dortmund.de

Christian Hakert (TU Dortmund) 9 / 9

christian.hakert@tu-dortmund.de
roland.kuehn@cs.tu-dortmund.de


Takeaways

• Applications rarely explicitly taken into wear-leveling

• Extend the application itself to track aging information

• Hook into checkpointing for low overhead wear-leveling

⇒ Careful wear-leveling for iterative write schemes required

⇒ Improved memory lifetime and aided wear-leveling beyond application scope

Thank You!
Questions? ⇒ christian.hakert@tu-dortmund.de /

roland.kuehn@cs.tu-dortmund.de

Christian Hakert (TU Dortmund) 9 / 9

christian.hakert@tu-dortmund.de
roland.kuehn@cs.tu-dortmund.de

	System Setup
	B+ Trees / Write Information Collection
	OCTO+ Wear-Leveling
	Evaluation
	Takeaways

