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System Setup

Iterative write scheme:

• Popular for PCM

• Sense cell before update

• ⇒ no write on unchanged value

00000000 ; 11111111

vs.

00101100 ; 00111100

; 00111110 ; 00111111

Expensive data migration!

Checkpointing:

• Keep data in VM
• Regularly copy checkpoint to NVM
• Utilize non-volatiliy + low DRAM

latency

Mapping between VM memory and NVM
checkpoint:

Easy to modify between checkpoints!
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B+ Trees / Write Information Collection

• Sorted split values and child pointers
• B+ Tree nodes consume one NVM block while checkpointing

Node 0

p0 p1 . . .k0 . . . knHeader

Node 1

p0 p1 . . .k0 . . . knHeader

Node 2

p0 p1 . . .k0 . . . knHeader

...

• Tree modification knows changed keys / pointers
• Maintain a Node Modification Mask (NMM)
• Bitmask indicating modified parts of nodes
• Reset at checkpoints
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OCTO+ Wear-Leveling

Abstract logical (application) memory and physical memory:
B
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Keep track of:
• B+ Node Modification (NMM)
• Short term usage of logic memory

• NVM Block Age
• Long term utilization of physical memory
• Accumulation of mapped B+ Tree NMMs
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OCTO+ Wear-Leveling (cont.)

Intra-Block WL:

1 Start from the current checkpoint
mapping, build bitmaps

2 Release all NVM blocks, which are
not 00000000 → results in n free
NVM blocks and n unmapped B+

tree nodes

3 Re-Shuffle the mapping:
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OCTO+ Wear-Leveling (cont.)

Intra-Block WL:

1 Start from the current checkpoint
mapping, build bitmaps

2 Release all NVM blocks, which are
not 00000000 → results in n free
NVM blocks and n unmapped B+

tree nodes

3 Re-Shuffle the mapping:

Inter-Block WL:

1 Track youngest and oldest NVM
block (min / max amount of writes
to subblocks)

2 If both have uneven intra block WL,
exchange logic mapping

3 Youngest / Oldest block are excluded
from subsequent checkpoint
remapping
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Evaluation

• Execute full implementation in full system simulation

• 3 B+ Tree benchmarks (+3 insert/update ratios)
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Takeaways

• Applications rarely explicitly taken into wear-leveling

• Extend the application itself to track aging information

• Hook into checkpointing for low overhead wear-leveling

⇒ Careful wear-leveling for iterative write schemes required

⇒ Improved memory lifetime and aided wear-leveling beyond application scope

Thank You!
Questions? ⇒ christian.hakert@tu-dortmund.de /

roland.kuehn@cs.tu-dortmund.de
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