
Exploring Skyrmion Racetrack Memory for High 
Performance Full-Nonvolatile FTL

Ya-Hui Yang, Yu-Pei Liang, Cheng-Hsiang Tseng, Shuo-Han Chen

Presented by Ya-Hui Yang, 
At NVMSA,
2021.08.18,



Outline
▪ Overview

▪ Background
▪ Flash Translation Layer (FTL)
▪ NVRAM-based Memory
▪ Skyrmion Racetrack Memory

▪ Motivation

▪ SK-RM-based FTL

▪ Performance Evaluation

▪ Conclusion



Overview
▪ SK-RM has demonstrated great potential as high-density and 

low-cost NVRAM
▪ Support random information update, deletion, and insertion at bit level

▪ Fast update / deletion speed

▪ SK particles are placed on a racetrack with 4 operations
▪ Insert, Delete, Detect, Shift

▪ Proposes a SK-FTL to preserve skyrmions in unused memory space through both 
horizontal and vertical shifts

▪ Reduce the accumulated insert and remove latencies of skyrmions by an average of 
62.69% and 93.25%, when compared with native page-based FTL on SK-RM with 
permutation write enabled



Background: Flash Translation Layer (FTL)
▪ Constraints of NAND flash 

▪ (1) Erase-before-write (2) Limited program/erase (P/E) cycles (3) Asymmetric access/erase unit

▪ FTL is used on flash-based storage devices to hide the constraints of 
NAND flash
▪ Maintains a logical address to physical address mapping
▪ Mapping entries are loaded & stored on DRAM and NAND Flash

▪ Components of FTL
▪ Space allocator 
▪ Wear leveling
▪ Garbage collection

▪ Main issues: 
▪ Movement overhead mapping entries 
▪ Possible corruption due to volatile DRAM



Background: NVRAM-based FTL
▪ Avoid the load/store of mapping entries between DRAM and NAND flash
▪ PCM FTL – Goal: Lifetime of PCM

▪ Storing mapping on PCM to completely replace DRAM
▪ enhancing the endurance of the PCM by minimizing the number of bit flips
▪ Wear leveling by moving block mapping across PCM

▪ NS-FTL / Load-FTL – Goal: Intra / Inter-entry wear leveling of NVRAM
▪ Windows based wear leveling

▪ Hybrid FTL – Goal: Performance
▪ Storing mapping on PCM
▪ Still include DRAM for caching

▪ Previous designs haven’t explored SK-RM for high performance FTL
▪ Skyrmions can be preserved for future use
▪ The vertical shift feature of SK-RM



Background: Skyrmion Racetrack Memory
▪ Presence of skyrmion: bit 1 & Absence of skyrmion: bit 0
▪ Access port: contains an injector and a detector
▪ Overhead regions: for temporarily holding 

skyrmions
▪ Skyrmions are placed on a racetrack with 4 

operations
▪ Shift, Insert, Remove, Detect

▪ Main challenges: 
▪ Operations can only be performed at access 

ports

▪ The latency of Insert/delete is longer than other 
operations



Motivation
▪ Using FTL on SK-RM
▪ Advantage: short read/write latency 
▪ To be improved: the bit pattern difference 

between successive FTL entry updates 
could lead to excessive insert and remove 
operations

▪ For example, in Figure (a), the data chunk C is 
updated twice 

▪ Conventional page allocation: pages of each block 
are allocated sequentially for new data writes

▪ Goal: to preserve and reuse injected skyrmions
properly while avoiding additional insert and remove
operations



SK-RM-based FTL: Review
▪ Explore SK-RM for high performance NVRAM-based FTL
▪ Injected SK particles can be retained for future data writes

▪ Difficulties
▪ How to minimize the number of insert & remove operations
▪ How to preserve skyrmions for future use

▪ SK-FTL Design
▪ Page-based FTL
▪ Each mapping entry fits into the distance

▪ Components
▪ SK-Aware Space Allocator
▪ Minimize the number of SK insertion

▪ Vertical Shifting Mechanism
▪ Shifting SK between racetracks

▪ Active SK Buffering Scheme
▪ Utilizing free/invalid space for buffering SK



SK-Aware Space Allocator
▪ Updates mapping entries by recomposing 

skyrimons in overhead region/free space
▪ To minimize the bit difference, grouping blocks 

into different lists based on their number of 1 
bits in their block addresses

▪ After considering block addresses, allocate a 
free page horizontally in the same bits-number-
based block list



Vertical Shift Mechanism
▪ Vertical shift: shifting the skyrmions to adjacent 

racetracks through the access ports
▪ Use other free or invalid regions on adjacent 

racetracks as the buffer region of permutation 
write strategy

▪ Since the memory space used as buffer region is 
free or invalid, excessive skyrmions between 
mapping entry updates can be preserved

▪ When skyrmion injections are required during 
entry updates, those preserved skyrmions in the 
buffer region can be reused



Active SK Buffering Scheme
▪ Repurpose free or invalid mapping entries as buffer region
▪ Both on-track and inter-track buffering
▪ Buffer or reuse through the horizontal or vertical shift operations



Experimental Setup
▪ Comparisons: FTL, PW FTL, and SK-FTL
▪ FTL: the FTL on SK-RM with the naive write strategy 
▪ remove all previous-injected skyrmions and inject new skyrmions based 

on the updated data pattern

▪ PW-FTL: FTL on SK-RM with the permutation-write strategy

▪ SK-FTL: our proposed SKFTL

▪ Traces: Microsoft Research Cambridge (MSR) & one-month I/O behavior of a 
personal computer

▪ The size of the simulated flash is 64 GB with 16KB pages



Experimental Results



Conclusion

▪ Proposed SK-FTL

▪ SK-aware space allocator: minimize the bit-1 difference 
between mapping updates

▪ Vertical shift mechanism

▪ The active SK buffering scheme: preserve skyrmions in unused space and 
recompose skyrmions for future data writes

▪ Evaluation results: the proposed SK-FTL can reduce the latencies of skyrmion
insert and remove operations by 62.69% and 93.25% on average compared 
with the PW FTL



Thank you for your listening.


	Exploring Skyrmion Racetrack Memory for High Performance Full-Nonvolatile FTL��Ya-Hui Yang, Yu-Pei Liang, Cheng-Hsiang Tseng, Shuo-Han Chen
	Outline
	Overview
	Background: Flash Translation Layer (FTL)
	Background: NVRAM-based FTL
	Background: Skyrmion Racetrack Memory
	Motivation
	SK-RM-based FTL: Review
	SK-Aware Space Allocator
	Vertical Shift Mechanism
	Active SK Buffering Scheme
	Experimental Setup
	投影片編號 13
	Conclusion
	投影片編號 15

