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Overview

« SK-RM has demonstrated great potential as high-density and
low-cost NVRAM
= Support random information update, deletion, and insertion at bit level
= Fast update / deletion speed
= SK particles are placed on a racetrack with 4 operations
= Insert, Delete, Detect, Shift
= Proposes a SK-FTL to preserve skyrmions in unused memory space through both
horizontal and vertical shifts

= Reduce the accumulated insert and remove latencies of skyrmions by an average of
62.69% and 93.25%, when compared with native page-based FTL on SK-RM with
permutation write enabled




Background: Flash Translation Layer (FTL)

= Constraints of NAND flash

= (1) Erase-before-write (2) Limited program/erase (P/E) cycles (3) Asymmetric access/erase unit

« FTL is used on flash-based storage devices to hide the constraints of

NAND flash

= Maintains a logical address to physical address mapping
= Mapping entries are loaded & stored on DRAM and NAND Flash

= Components of FTL
= Space allocator
= Wear leveling
= Garbage collection
= Main issues:
= Movement overhead mapping entries
= Possible corruption due to volatile DRAM
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Background: NVRAM-based FTL

= Avoid the load/store of mapping entries between DRAM and NAND flash

PCM FTL - Goal: Lifetime of PCM
= Storing mapping on PCM to completely replace DRAM
= enhancing the endurance of the PCM by minimizing the number of bit flips

= Wear leveling by moving block mapping across PCM

NS-FTL / Load-FTL — Goal: Intra / Inter-entry wear leveling of NVRAM
= Windows based wear leveling

Hybrid FTL — Goal: Performance

= Storing mapping on PCM

= Still include DRAM for caching

Previous designs haven’t explored SK-RM for high performance FTL

= Skyrmions can be preserved for future use

= The vertical shift feature of SK-RM




Background: Skyrmion Racetrack Memory

Presence of skyrmion: bit 1 & Absence of skyrmion: bit O

Access port: contains an injector and a detector

Overhead regions: for temporarily holding
skyrmions

Skyrmions are placed on a racetrack with 4
operations

= Shift, Insert, Remove, Detect

Main challenges:

= Operations can only be performed at access
ports

= The latency of Insert/delete is longer than other

operations

(a) Skyrmion racetrack with 11 bit zones and 3 access ports
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Motivation
= Using FTL on SK-RM

. Advantage: short read/write Iatency TABLE [: Comparison of DRAM and NVRAM [3.4, §].

= To be improved: the bit pattern difference Latency =~ DRAM ~ PCM  STT-RAM SK-RM
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SK-RM-based FTL: Review

= Explore SK-RM for high performance NVRAM-based FTL
= |Injected SK particles can be retained for future data writes

= Difficulties
= How to minimize the number of insert & remove operations
= How to preserve skyrmions for future use

= SK-FTL Design

- Page-based FTL NAND Flash Storage Devices

= Each mapping entry fits into the distance SK-RM Flash Translation Layer NAND Flash

= Components

= SK-Aware Space Allocator
= Minimize the number of SK insertion Active SK Buffering
- Vertical Shifting Mechanism Mapping Table Scheme

= Shifting SK between racetracks Perpendicular Shifting
= Active SK Buffering Scheme Copy-on-Write Mechanism

= Utilizing free/invalid space for buffering SK
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SK-Aware Space Allocator

= Updates mapping entries by recomposing
skyrimons in overhead region/free space
= To minimize the bit difference, grouping blocks
into different lists based on their number of 1 , ,
o _ (a) Convert block number into binary value
bits in their block addresses Binary Binary

] e Blk1 ->00001 Blk3 ->00011
After considering block addresses, allocate a alk2 — 00010 BIkS - 00101

free page horizontally in the same bits-number-  Blk4 ->00100 Blk6é ->00110
based block list
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Vertical Shift Mechanism

= Vertical shift: shifting the skyrmions to adjacent
racetracks through the access ports

= Use other free or invalid regions on adjacent
racetracks as the buffer region of permutation
write strategy

= Since the memory space used as buffer region is
free or invalid, excessive skyrmions between
mapping entry updates can be preserved

= When skyrmion injections are required during
entry updates, those preserved skyrmions in the
buffer region can be reused

(a) Perpendicular shift through access ports
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(b) Permutation write via perpendicular shift
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Active SK Buffering Scheme

= Repurpose free or invalid mapping entries as buffer region

= Both on-track and inter-track buffering
= Buffer or reuse through the horizontal or vertical shift operations

Entries 0, 3, 6, 9 Entries 1,4, 7, 10 Entries 2, 5, 8, 11
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Experimental Setup
= Comparisons: FTL, PW FTL, and SK-FTL
= FTL: the FTL on SK-RM with the naive write strategy

= remove all previous-injected skyrmions and inject new skyrmions based
on the updated data pattern

« PW-FTL: FTL on SK-RM with the permutation-write strategy
« SK-FTL: our proposed SKFTL

= Traces: Microsoft Research Cambridge (MSR) & one-month I/O behavior of a
personal computer

= The size of the simulated flash is 64 GB with 16KB pages
TABLE II: Latency of SK-RM operations [4].

Operations  Read Shift ~ Remove Insert

Latency 0.1 ns 05ns 0.8 ns I ns




Experimental Results

Latency in Log Scale (
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Fig. 9: Inject latency comparison.
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Fig. 12: Shift latency comparison.
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10: Remove latency comparison.
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Fig. 13: Accumulated 1-bit difference.
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11: Detect latency comparison.

Janas 129fo.

“Wm“m“@WW

COFTL BPW FTL MSE-FTL

: Fo§ 2 % % @ B
E i ] % ] g & 3
£ 5 3 P £ 3
3 % - - g g % =3
g S B
Read Write

Fig. 14: Read/Write Latency of NAND flash.



Conclusion

= Proposed SK-FTL

= SK-aware space allocator: minimize the bit-1 difference
between mapping updates

= Vertical shift mechanism

= The active SK buffering scheme: preserve skyrmions in unused space and
recompose skyrmions for future data writes

= Evaluation results: the proposed SK-FTL can reduce the latencies of skyrmion
insert and remove operations by 62.69% and 93.25% on average compared
with the PW FTL
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