Exploring Skyrmion Racetrack Memory for High
Performance Full-Nonvolatile FTL

Ya-Hui Yang, Yu-Pei Liang, Cheng-Hsiang Tseng, Shuo-Han Chen

Presented by Ya-Hui Yang,
At NVMSA,
2021.08.18,

Outline

= Qverview

= Background

* Flash Translation Layer (FTL)
= NVRAM-based Memory
= Skyrmion Racetrack Memory

= Motivation
= SK-RM-based FTL
= Performance Evaluation

= Conclusion

Overview

« SK-RM has demonstrated great potential as high-density and
low-cost NVRAM
= Support random information update, deletion, and insertion at bit level
= Fast update / deletion speed
= SK particles are placed on a racetrack with 4 operations
= Insert, Delete, Detect, Shift
= Proposes a SK-FTL to preserve skyrmions in unused memory space through both
horizontal and vertical shifts

= Reduce the accumulated insert and remove latencies of skyrmions by an average of
62.69% and 93.25%, when compared with native page-based FTL on SK-RM with
permutation write enabled

Background: Flash Translation Layer (FTL)

= Constraints of NAND flash

= (1) Erase-before-write (2) Limited program/erase (P/E) cycles (3) Asymmetric access/erase unit

« FTL is used on flash-based storage devices to hide the constraints of

NAND flash

= Maintains a logical address to physical address mapping
= Mapping entries are loaded & stored on DRAM and NAND Flash

= Components of FTL
= Space allocator
= Wear leveling
= Garbage collection
= Main issues:
= Movement overhead mapping entries
= Possible corruption due to volatile DRAM

NAND Flash Storage Device

Flash Translation Layer

------------ 1

DRAM Space Allocator !
Pei?;&?s:” : Written back X
Y (Unit: page) l—'):

| c i

| ache '

Cached) — (Unit: entry) |

Mapping Table Jo]
(e ——— Fe——m == ——
| Wear :: Garbage :
: Leveling ') Collection I

o ——————————

NAND Flash

Mapping
Area

Controller

Data
Area

Background: NVRAM-based FTL

= Avoid the load/store of mapping entries between DRAM and NAND flash

PCM FTL - Goal: Lifetime of PCM
= Storing mapping on PCM to completely replace DRAM
= enhancing the endurance of the PCM by minimizing the number of bit flips

= Wear leveling by moving block mapping across PCM

NS-FTL / Load-FTL — Goal: Intra / Inter-entry wear leveling of NVRAM
= Windows based wear leveling

Hybrid FTL — Goal: Performance

= Storing mapping on PCM

= Still include DRAM for caching

Previous designs haven’t explored SK-RM for high performance FTL

= Skyrmions can be preserved for future use

= The vertical shift feature of SK-RM

Background: Skyrmion Racetrack Memory

Presence of skyrmion: bit 1 & Absence of skyrmion: bit O

Access port: contains an injector and a detector

Overhead regions: for temporarily holding
skyrmions

Skyrmions are placed on a racetrack with 4
operations

= Shift, Insert, Remove, Detect

Main challenges:

= Operations can only be performed at access
ports

= The latency of Insert/delete is longer than other

operations

(a) Skyrmion racetrack with 11 bit zones and 3 access ports

Access ports

Shift =T Shift
MOS —T —) T Tt MOS
[W— o oo, nterport) overt d]
Overhead none skyrmion: skyrmion: ~ Nterport Overhea
Region bit 0 bit 1 Distance Region
(b) Shift (c) Insert (Write)
Top Top
Head[]Tail Head [%]Tail
Jshiﬁ‘ J‘Jn;'ect
Bottom Bottom
(d) Remove (Delete) (e) Detect (Read)
Top Top
Head[]Tail Head [@]Tail
Jremove Detector’| ()< Injector
Bottom Bottom

Motivation
= Using FTL on SK-RM

. Advantage: short read/write Iatency TABLE [: Comparison of DRAM and NVRAM [3.4, §].

= To be improved: the bit pattern difference Latency =~ DRAM ~ PCM STT-RAM SK-RM
, Read (ns) 15 50-70 1.62 0.1
between successive FTL entry updates 0t T 6 0t 10
i , Write (ns) 15 150-220 ., . . e s
could lead to excessive insert and remove (Oto’lr4 "1"t0 006
operations (a) Updating data chunk C with conv. page alloc.
= For example, in Figure (a), the data chunk C is Bk0 Blkl Blk2 Blk8

. Page 0 L E
updated twice Page 1 H ﬂ
= . P 2] n H
= Conventional page allocation: pages of each block R = = F {”f.).

are allocated sequentially for new data writes

Page 2551 C' |(iij)] K W

= Goal: to preserve and reuse injected skyrmions o
(b) Bit difference after each entry update

properly while avoiding additional insert and remove) i -

g Blk 0, Page 2 =» Blk 0, Page 255 - BIlk 8, Page 2
operatlons 00000 00000010 00000 11111111 01000 OOOOOO10

Ny Insert 7 /' N Remaue&/
1-bits 1-bits

SK-RM-based FTL: Review

= Explore SK-RM for high performance NVRAM-based FTL
= |Injected SK particles can be retained for future data writes

= Difficulties
= How to minimize the number of insert & remove operations
= How to preserve skyrmions for future use

= SK-FTL Design

- Page-based FTL NAND Flash Storage Devices

= Each mapping entry fits into the distance SK-RM Flash Translation Layer NAND Flash

= Components

= SK-Aware Space Allocator
= Minimize the number of SK insertion Active SK Buffering
- Vertical Shifting Mechanism Mapping Table Scheme

= Shifting SK between racetracks Perpendicular Shifting
= Active SK Buffering Scheme Copy-on-Write Mechanism

= Utilizing free/invalid space for buffering SK

SK-Aware Allocator

Data
Area

Controller

SK-Aware Space Allocator

= Updates mapping entries by recomposing
skyrimons in overhead region/free space
= To minimize the bit difference, grouping blocks
into different lists based on their number of 1 , ,
o _ (a) Convert block number into binary value
bits in their block addresses Binary Binary

] e Blk1 ->00001 Blk3 ->00011
After considering block addresses, allocate a alk2 — 00010 BIkS - 00101

free page horizontally in the same bits-number- Blk4 ->00100 Blk6é ->00110
based block list

[[] Free DM|DC3tEIb|E [Allocated Invalid
Blk O Blk 1 Blk 2 Blk 8 Blk 16

Blk 8 -> 01000 Blk 9 -> 01001

(b) Group Ey the number of 1 bits
Bits-Num-based Block Lists

' ro/ibiH Bko H BkT H Bik2
2 bits H Blk3 H Blk5 H Blké
3bits H Blk7 H Blk11 H Blk 13

A B

L M

- H . |
N o N

)
[Y —

Blk List of 0/1 bit

Vertical Shift Mechanism

= Vertical shift: shifting the skyrmions to adjacent
racetracks through the access ports

= Use other free or invalid regions on adjacent
racetracks as the buffer region of permutation
write strategy

= Since the memory space used as buffer region is
free or invalid, excessive skyrmions between
mapping entry updates can be preserved

= When skyrmion injections are required during
entry updates, those preserved skyrmions in the
buffer region can be reused

(a) Perpendicular shift through access ports

Head

Head

gy

J shift

e

©0O

) (

J (

.
) R
. ' 1
. '
Q‘ ’
Seae’

-

Access port

)

Tail

Tail

(b) Permutation write via perpendicular shift

Head

Head

r—

Entry N

—

) (

@
: |

Entry 2N

) (

O

O =

S

e ————

Access ports

Tail

Tail

Active SK Buffering Scheme

= Repurpose free or invalid mapping entries as buffer region

= Both on-track and inter-track buffering
= Buffer or reuse through the horizontal or vertical shift operations

Entries 0, 3, 6, 9 Entries 1,4, 7, 10 Entries 2, 5, 8, 11

A

A A

\ 4 A\

SE— CEm—

$ IS el e el X

] \] \] \] \] \

\\ /I \\-’I \\-,I \\-,I \\-,I

(a) Buffering skyrmions

O _ OO0 _ OO0 O
]]] \)]
\ / \ / \ Y]
N~ S~ N

— 'r (b) Reusing skyrmions _
OEmmee oDl

- -
7 A Y 4 hY
) | 1 1
\ / \ /
SN ~ o

)

(
|

)
J

Updating . Invalidated

Experimental Setup
= Comparisons: FTL, PW FTL, and SK-FTL
= FTL: the FTL on SK-RM with the naive write strategy

= remove all previous-injected skyrmions and inject new skyrmions based
on the updated data pattern

« PW-FTL: FTL on SK-RM with the permutation-write strategy
« SK-FTL: our proposed SKFTL

= Traces: Microsoft Research Cambridge (MSR) & one-month I/O behavior of a
personal computer

= The size of the simulated flash is 64 GB with 16KB pages
TABLE II: Latency of SK-RM operations [4].

Operations Read Shift ~ Remove Insert

Latency 0.1 ns 05ns 0.8 ns I ns

Experimental Results

Latency in Log Scale (

COFTL EPWFTL ESK-FTL

File Server Project WebsQL Media Server One-month
Server Server

Fig. 9: Inject latency comparison.

1.00E+10
1.00E+09
Z 1.00E+08
o 1.00E+07
3 1.00e:06
3 1.00E+05
£ 1.00E+04
€ 1.00E+03
g
® 1.00E+02
1.00E401
1.00E+00

LIFTL B PW FTL ESK-FTL

File Server Project WebSQL Media Server One-month
Server Server

Fig. 12: Shift latency comparison.

1.00E+09
1.00E+08
£ 1.008+07

o
= 1.00E+06
3

W
g:,l.DDEi-OS

= 1.00E+04

& 1.00E+03

o]

E

5 1.00£+02
1.00E401
1.00E400

Fig.

1.00E+039
1.00E+08
1.00E+07
1.00E+06
1.00E+05
1.00E+04
1.00E+03
1.00E+02
1.00E+01

Accumulated 1-Bits Diff. in Log scale

1.00E+00

COFTL WPW FTL ESK-FTL

File Server Project WebSQL Media Server One-month
Server Server

10: Remove latency comparison.

[JFTL B PWFTL HSK-FTL

File Server Project WebS0QL Media Server One-month
Server Server

Fig. 13: Accumulated 1-bit difference.

1.00E+09
1.00E+08

C 1.00E+07

2 1.00E+06

3

s 1.00E+05

(=]

= 1.00E+04

& 1.00E+03

1.00E+02

Late

1.00E+01
1.00E+00

Fig.
80
70
&80
50
40
30
20

IOH
o

Average Latency (x1.0E06 ns)

snsag oy [

[JFTL MPWFTL ESK-FTL

G‘l Ol‘ U'II GI| O“

File Server Project WebS0QL Media Server One-month

Server Server

11: Detect latency comparison.

Janas 129fo.

“Wm“m“@WW

COFTL BPW FTL MSE-FTL

: Fo§ 2 % % @ B
E i] %] g & 3
£ 5 3 P £ 3
3 % - - g g % =3
g S B
Read Write

Fig. 14: Read/Write Latency of NAND flash.

Conclusion

= Proposed SK-FTL

= SK-aware space allocator: minimize the bit-1 difference
between mapping updates

= Vertical shift mechanism

= The active SK buffering scheme: preserve skyrmions in unused space and
recompose skyrmions for future data writes

= Evaluation results: the proposed SK-FTL can reduce the latencies of skyrmion
insert and remove operations by 62.69% and 93.25% on average compared
with the PW FTL

! hank, You fw‘ your //&tea/}y.

	Exploring Skyrmion Racetrack Memory for High Performance Full-Nonvolatile FTL��Ya-Hui Yang, Yu-Pei Liang, Cheng-Hsiang Tseng, Shuo-Han Chen
	Outline
	Overview
	Background: Flash Translation Layer (FTL)
	Background: NVRAM-based FTL
	Background: Skyrmion Racetrack Memory
	Motivation
	SK-RM-based FTL: Review
	SK-Aware Space Allocator
	Vertical Shift Mechanism
	Active SK Buffering Scheme
	Experimental Setup
	投影片編號 13
	Conclusion
	投影片編號 15

