IEEE NVMSA 2021

The 10th IEEE Non-Volatile Memory Systems and Applications Symposium August 18-20, 2021, Virtual Conference

A Non-volatile Computing-in-Memory ReRAM Macro using Two-bit Current-Mode Sensing Amplifier

Qiqiao Wu^a, Wenhao Sun^a, Junpeng Wang^a, Xuefei Bai^a, Feng Zhang^b, Song Chen^a and Yi Kang^a

^a School of Microelectronics, University of Science and Technology of China, Hefei, China
 ^b Institute of Microelectronics of the Chinese Academy of Sciences, Beijing, China

Outline

IEEE NVMSA 2021

The 10th IEEE Non-Volatile Memory Systems and Applications Symposium August 18-20, 2021, Virtual Conference

- Introduction
- Preliminary
- Architecture and circuits
- Layout and simulation
- Conclusion

IEEE NVMSA 2021

The 10th IEEE Non-Volatile Memory Systems and Applications Symposium August 18-20, 2021, Virtual Conference

Traditional Von Neumann Structure

IEEE NVMSA 2021

The 10th IEEE Non-Volatile Memory Systems and Applications Symposium August 18-20, 2021, Virtual Conference

Non-von Neumann architecture

fuse together

IEEE NVMSA 2021

The 10th IEEE Non-Volatile Memory Systems and Applications Symposium August 18-20, 2021, Virtual Conference

Resistance random access memory

IEEE NVMSA 2021

The 10th IEEE Non-Volatile Memory Systems and Applications Symposium August 18-20, 2021, Virtual Conference

main challenge

Resistance-based memory

Digital process

IEEE NVMSA 2021

The 10th IEEE Non-Volatile Memory Systems and Applications Symposium August 18-20, 2021, Virtual Conference

current-mode sensing amplifier

Analog-to-digital converter

Conventional CSA (SRAM, binary nvRAM)

(Multi-value nvRAM)

Preliminary

IEEE NVMSA 2021

The 10th IEEE Non-Volatile Memory Systems and Applications Symposium August 18-20, 2021, Virtual Conference

1T1R architecture with decoders, drivers and CSAs

A smaller array size will ensure ReRAM device operation voltage does not exceed the limit voltage range of the CMOS technology node

Preliminary

IEEE NVMSA 2021

The 10th IEEE Non-Volatile Memory Systems and Applications Symposium August 18-20, 2021, Virtual Conference

Different topology for CIM

(a) conventional array topology

Used in combination with ADC/DAC

Used in combination with CSA

Preliminary

IEEE NVMSA 2021

The 10th IEEE Non-Volatile Memory Systems and Applications Symposium August 18-20, 2021, Virtual Conference

CNN acceleration

LSTM acceleration

Require: more memory bandwidth Performance: restricted by memory performance

Data reuse

IEEE NVMSA 2021

The 10th IEEE Non-Volatile Memory Systems and Applications Symposium August 18-20, 2021, Virtual Conference

Overall structure

IEEE NVMSA 2021

The 10th IEEE Non-Volatile Memory Systems and Applications Symposium August 18-20, 2021, Virtual Conference

Accuracy evaluation

IEEE NVMSA 2021

The 10th IEEE Non-Volatile Memory Systems and Applications Symposium August 18-20, 2021, Virtual Conference

Subarray size: 256×32

IEEE NVMSA 2021

The 10th IEEE Non-Volatile Memory Systems and Applications Symposium August 18-20, 2021, Virtual Conference

Decoder with extenders

CIM mode function table

Din<1>	Din<0>	ROW 2i	ROW 2i+1
0	0	off	off
0	1	off	on
1	0	on	off
1	1	on	on

IEEE NVMSA 2021

The 10th IEEE Non-Volatile Memory Systems and Applications Symposium August 18-20, 2021, Virtual Conference

A computation example based on CIM operation

Basic formula: 3*10 + 6*2 = 42CIM formula: $2^{0}*10 + 2^{1}*(10+2) + 2^{2}*2 + 2^{3}*0 = 42$

Two-bit CSA

IEEE NVMSA 2021

The 10th IEEE Non-Volatile Memory Systems and Applications Symposium August 18-20, 2021, Virtual Conference

Read current analysis with ReRAM device dispersion

The read current fluctuation of low resistance state device at 72K ohms is 22.9% The read current fluctuation of high resistance state device at 530K ohm will reach 43.7% [17]

Two-bit CSA

IEEE NVMSA 2021

The 10th IEEE Non-Volatile Memory Systems and Applications Symposium August 18-20, 2021, Virtual Conference

Sensing circuit of 2b-CSA

2b-CSA output coding scheme

V_{out_H}	V_{out_L}	Encoded data
0	0	0
0	1	1
1	0	invalid
1	1	2

Layout and simulation

IEEE NVMSA 2021

The 10th IEEE Non-Volatile Memory Systems and Applications Symposium August 18-20, 2021, Virtual Conference

Layout design and area comparison between 2b-CSA with traditional CSA

Layout and simulation

IEEE NVMSA 2021

The 10th IEEE Non-Volatile Memory Systems and Applications Symposium August 18-20, 2021, Virtual Conference

ReRAM-based CIM function simulation

First CIM cycle: (1,1) dot product (1,1), and simulation result is (1,1) Second CIM cycle: (1,1) dot product (0,0), the result of the simulation is (0,0)

Layout and simulation

IEEE NVMSA 2021

The 10th IEEE Non-Volatile Memory Systems and Applications Symposium August 18-20, 2021, Virtual Conference

Power&Area&Throughput&Energy per bit analysis

Conclusion

IEEE NVMSA 2021

The 10th IEEE Non-Volatile Memory Systems and Applications Symposium August 18-20, 2021, Virtual Conference

- We consider the dispersion of ReRAM devices and realize the bit-vector matrix multiplication in the two-row mode, propose a ReRAM-based CIM architecture, including the decoder with extenders and 2b-CSA
- Compared with 1b-CSA, 2b-CSA in this work improves throughput, dramatically reduces operating energy consumption per bit and access time with a minor increase in power consumption and area

References

IEEE NVMSA 2021

The 10th IEEE Non-Volatile Memory Systems and Applications Symposium August 18-20, 2021, Virtual Conference

[2] S. Yu, "Neuro-inspired computing with emerging nonvolatile memory," *Proceedings of the IEEE*, vol. 106, no. 2, pp. 260-285, 2018.

[4] P. Yao, H. Wu, B. Gao, J. Tang, Q. Zhang, W. Zhang, J. J. Yang, and H. Qian, "Fully hardwareimplemented memristor convolutional neural network," *Nature*, vol. 577, no. 7792, pp. 641-646, 2020.

[5] W. H. Chen, K. X. Li, W. Y. Lin, K. H. Hsu, and M. F. Chang, "A 65nm 1mb nonvolatile computing-inmemory reram macro with sub-16ns multiply-and-accumulate for binary dnn ai edge processors," in 2018 IEEE International Solid - State Circuits Conference - (ISSCC), 2018.

[6] S. Ambrogio, P. Narayanan, H. Tsai, R. M. Shelby, and G. W. Burr, "Equivalent-accuracy accelerated neural-network training using analogue memory," *Nature*, vol. 558, no. 7708, 2018.

[8] Z. Feng, D. Fan, D. Yuan, L. Jin, and M. F. Chang, "A 130nm 1mb hfox embedded rram macro using selfadaptive peripheral circuit system techniques for 1.6x work temperature range," in *2017 IEEE Asian Solid-State Circuits Conference (A-SSCC)*, 2017.

[17] D. Dong, L. Jing, Y. Wang, X. Xu, and M. Liu, "The impact of rtn signal on array level resistance fluctuation of resistive random access memory," *IEEE Electron Device Letters*, vol. PP, no. 99, pp. 1-1, 2018.

IEEE NVMSA 2021

The 10th IEEE Non-Volatile Memory Systems and Applications Symposium August 18-20, 2021, Virtual Conference

Thank You

Qiqiao Wu (<u>wuqiqiao@mail.ustc.edu.cn</u>)
Wenhao Sun (<u>wh1997@mail.ustc.edu.cn</u>)
Junpeng Wang (<u>wjp97@mail.ustc.edu.cn</u>)
Xuefei Bai (<u>baixf@ustc.edu.cn</u>)
Feng Zhang (<u>Zhangfeng_ime@ime.ac.cn</u>)
Song Chen (<u>songch@ustc.edu.cn</u>)
Yi Kang (<u>ykang@ustc.edu.cn</u>)