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 Machine learning inference engine is of great interest to smart edge computing. Compute-in-memory (CIM) 
architecture has shown significant improvements in throughput and energy efficiency for hardware 
acceleration. 

 eNVM-based CIM is attractive for portable device due to its non-volatility, high density, low energy 
consumption and leakage.

 Portable devices increase the vulnerability of model leakage, which could be used for white-box adversarial 
attack.
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Fig.1. Accelerators for Neural Network
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 Adversarial attack generates adversarial examples that could 
fool the network while looks no difference to the human eyes.

 Types of adversarial attack
 white box attack

 Black box attack

 Adversarial examples from one device will be effective on all 
devices with the same model.

Fig.2. classification results from the same network 
for original images and adversarial examples
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• Compute-in-memory (CIM): the weight
are stored in memory array, while the
activations are loaded in as input to WLs
 the current summation along columns
represents weighted sum

• ADC is necessary at the edge of the array
to convert analog signal back to digital
domain for further process

• ADC offset exploited as countermeasure
for adversarial examples

• On chip hybrid fine-tune to recover
accuracy and make adversarial examples
less transferable

Introduction: Compute-In-Memory (CIM)

Fig.3. General CIM architecture



• Generally, there are two types of ADC used in CIM: Flash-ADC and SAR-ADC.
• The main component in both ADCs that cause offset is the comparator (or sense amplifier in CIM).
• Flash-ADC uses different comparators for different levels and uses encoder to convert the

thermometer code to the binary code.
• SAR-ADC has only one comparator but compares in several iterative cycles with a binary tree

search towards the correct level.

Introduction: ADCs
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Fig.4. General ADC architecture



• ADC offset caused by SA offset.
• There are mainly two types of Sense amplifier (SA):  voltage mode (VSA)  & current mode (CSA). 
• Specifically, we use a simple latch based CSA as shown in Fig. 5(a), to minimize the area of ADC.
• SA offset reflected by the sense pass rate

• In a case study of 5-bit Flash-ADC, the sense pass rate decreases with increasing partial sum 
level (or increasing column current) as shown in Fig. 5(b). If load resistance is smaller, the 
current to be sensed is larger, and the sense pass rate is lower 

• Use reference current offset to mimic SA offset. 

Methodology: ADC offset variation modeling

Fig. 5.  (a) Latch-based current-mode SA. (b) Sense pass rate for 5-bit Flash-ADC. 



• Use reference current offset to mimic SA offset. 
• Assume Iref distribution follows the Gaussian function

• The sense pass rate is interpreted as the cumulative probability of reference current being
smaller than the partial sum as the green shade area shown in Fig. 6 (a).

• For a 5-bit Flash ADC, there are 31 different SAs which may have different shifts from each other.
• For the SAR ADC, since the same SA is always used, for each level, the Iref should be shifted to

the same direction. Fig. 6(b) show the sigma over mu ratio for each Iref obtained.

Methodology: ADC offset variation modeling

Fig. 6. (a) Sense pass rate to Iref offset conversion (b) Sigma/mu of the
Gaussian distribution of Iref offset converted from sense pass rate.



ADC error

• For Flash-ADC, since each shift is 
independent, somehow these random shifts 
could compensate each other. 

• For SAR-ADC, the bias favors in one direction.

• SAR-ADC has bigger variation when sensing 
the same partial sum than Flash-ADC. 
Mismatch

• Increasing transistor size (e.g. W/L) will 
reduce the variation, thus increasing the 
sense pass rate and decrease the ADC error 

Fig. 7. Simulated ADC output with offset sampled from the Iref distribution based
on the sense pass rate for different W/L for Flast-ADC and SAR-ADC
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• The feedforward propagation 
(inference) is first performed on-chip

• backpropagation and weight update 
are done off-chip by software.

• finally, the memory cells will be 
reprogramed to the new weights 
possibly with write-verify  

Fig. 8. Dataflow of on-chip fine-tune
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Network Finetune： 

 Train a network without variation, saved as model0   

 Load model0 to chip1 which has a set of ADC 

variation specified for it. Fine-tune the network to 

recover the accuracy.  

 Load model0 to chip2 which has a set of ADC 

variation specified for it. Fine-tune the network to 

recover the accuracy.  

Case1: Attack original model: 

 Attack model0, which is the pure digital network, to 

generate a set of images: adversarial examples 

 Apply adversarial examples to chip1 

Case2: Attack retrained digital model: 

 Read the digital weights on chip1 out and load it to 

network in pure digital version. In this case the digital 

model knows nothing about the adc offset and thus 

will experience performance degradation, we call this 

as model1. 

 Attack model1, which is the pure digital network, to 

generate a set of images: adversarial examples 

 Apply adversarial examples to chip1 

Case3: Attack retrained chip： 

 Attack chip2, which is a hybrid process that inference 

is performed on chip and backpropagation is 

calculated by software, to generate a set of images: 

adversarial examples 

 Apply adversarial examples to chip1 
 

Fig. 9. Threaten Pattern of adversarial attacks



Fine-tune with ADC offset
• CIFAR-10 image classification on a 

VGG-8 model with 8-bit and the 
weight is 2-bit. 

• Fig. 10 (a) (b) shows the retrain 
curve(training accuracy) of Flash-ADC 
and SAR-ADC with different W/L (thus 
different offset) for one specific chip. 

• Flash-ADC has a very small initial 
accuracy drop and could be retrained 
to recover the accuracy, 

• SAR-ADC and evaluate its impact on 
retrain performance. It is seen that as 
the W/L decreases, it will be more 
difficult to retrain the model to 
recover the accuracy under process 
variations. 

• we run several retrain tests to show 
that the trend recovery of accuracy is 
not a one-time coincidence (Fig. 10 (c) 
(d))

Fig. 10. (a) (b) retrain curve of chip with ADC offset. (c) accuracy distribution
before retrain. (d) accuracy distribution after retrain



Evaluation Result: Accuracy Results



Conclusion

• In this work, the threats of adversarial attacks on CIM-based machine 
learning edge inference engine are identified. 

• We first explore ADC offset modeling in CIM designs and proposed an 
on-chip finetune scheme against adversarial examples. 

• Our evaluation results show that by utilizing the ADC offset, the DNN 
model could be retrained to maintain high accuracy. 

• Accompanied by accuracy recovery, updated weights on chip will vary 
from chip to chip. The transferability of the adversarial examples are 
strongly suppressed by the finetune for each chip instance. 
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