
Mitigating Adversarial Attack for
Compute-in-Memory Accelerator

Utilizing On-chip Finetune
Shanshi Huang, Hongwu Jiang and Shimeng Yu

Georgia Institute of Technology

NVMSA 2021

 Machine learning inference engine is of great interest to smart edge computing. Compute-in-memory (CIM)
architecture has shown significant improvements in throughput and energy efficiency for hardware
acceleration.

 eNVM-based CIM is attractive for portable device due to its non-volatility, high density, low energy
consumption and leakage.

 Portable devices increase the vulnerability of model leakage, which could be used for white-box adversarial
attack.

GPU FPGA TPU

Analog CMOS (or eNVMs)
~ 10-100 TOPS/W

Conventional computing platform
s < 5 TOPS/W

Digital CMOS ASICs
~ 1-10 TOPS/W

Compute-in-memory

Fig.1. Accelerators for Neural Network

Motivation

 Adversarial attack generates adversarial examples that could
fool the network while looks no difference to the human eyes.

 Types of adversarial attack
 white box attack

 Black box attack

 Adversarial examples from one device will be effective on all
devices with the same model.

Fig.2. classification results from the same network
for original images and adversarial examples

Motivation
shipcat

airplane

ship

frog frog

ship automobile automobile

dogbirdship

(a)

(b)

Software train w/o variation model0

chip1 chip2

read

model1

Retrain (finetune): Recover accuracy

Adversarial Attack Demonstration

Case1: Software attack
model0

apply to
chip1

Case2: Software attack
model1

apply to
chip1

Attack original model

Attack retrained digital model

Case3: hybrid attack
chip2

apply to
chip1

Attack retrained chip

Network Finetune

Hybrid attack: on-chip inference
+ software backpropagation

Motivation

Trained software model
or on-chip model

X=X+δX

Adversarial samples

Adversarial attack

inference

Adversarial samples
misclassified

or

• Compute-in-memory (CIM): the weight
are stored in memory array, while the
activations are loaded in as input to WLs
 the current summation along columns
represents weighted sum

• ADC is necessary at the edge of the array
to convert analog signal back to digital
domain for further process

• ADC offset exploited as countermeasure
for adversarial examples

• On chip hybrid fine-tune to recover
accuracy and make adversarial examples
less transferable

Introduction: Compute-In-Memory (CIM)

Fig.3. General CIM architecture

• Generally, there are two types of ADC used in CIM: Flash-ADC and SAR-ADC.
• The main component in both ADCs that cause offset is the comparator (or sense amplifier in CIM).
• Flash-ADC uses different comparators for different levels and uses encoder to convert the

thermometer code to the binary code.
• SAR-ADC has only one comparator but compares in several iterative cycles with a binary tree

search towards the correct level.

Introduction: ADCs

R
efere

n
ce

 In
p

u
ts

C
O

M
P

C
O

M
P

C
O

M
P

Vin

Thermometer
To

Binary Encoder

N
-b

it
D

igital O
u

tp
u

t

C
O

M
P

S/H

DAC

SAR Logic

Dn-1

CLK

Dn-2 D1 D0

Digital
Output

Vin

VDAC

Flash ADC SAR ADC

Fig.4. General ADC architecture

• ADC offset caused by SA offset.
• There are mainly two types of Sense amplifier (SA): voltage mode (VSA) & current mode (CSA).
• Specifically, we use a simple latch based CSA as shown in Fig. 5(a), to minimize the area of ADC.
• SA offset reflected by the sense pass rate

• In a case study of 5-bit Flash-ADC, the sense pass rate decreases with increasing partial sum
level (or increasing column current) as shown in Fig. 5(b). If load resistance is smaller, the
current to be sensed is larger, and the sense pass rate is lower

• Use reference current offset to mimic SA offset.

Methodology: ADC offset variation modeling

Fig. 5. (a) Latch-based current-mode SA. (b) Sense pass rate for 5-bit Flash-ADC.

• Use reference current offset to mimic SA offset.
• Assume Iref distribution follows the Gaussian function

• The sense pass rate is interpreted as the cumulative probability of reference current being
smaller than the partial sum as the green shade area shown in Fig. 6 (a).

• For a 5-bit Flash ADC, there are 31 different SAs which may have different shifts from each other.
• For the SAR ADC, since the same SA is always used, for each level, the Iref should be shifted to

the same direction. Fig. 6(b) show the sigma over mu ratio for each Iref obtained.

Methodology: ADC offset variation modeling

Fig. 6. (a) Sense pass rate to Iref offset conversion (b) Sigma/mu of the
Gaussian distribution of Iref offset converted from sense pass rate.

ADC error

• For Flash-ADC, since each shift is
independent, somehow these random shifts
could compensate each other.

• For SAR-ADC, the bias favors in one direction.

• SAR-ADC has bigger variation when sensing
the same partial sum than Flash-ADC.
Mismatch

• Increasing transistor size (e.g. W/L) will
reduce the variation, thus increasing the
sense pass rate and decrease the ADC error

Fig. 7. Simulated ADC output with offset sampled from the Iref distribution based
on the sense pass rate for different W/L for Flast-ADC and SAR-ADC

Hybrid on-chip fine-tuneAccuracy
recovered

Attacker

Steal on-chip
model

Apply on
other chips

Not working!
(accuracy low)

Hybrid chip fine-tune

Inference chipInput Feature
Maps (Y1...Yn)

loss

Local processor

B
a

ckp
ro

p
ag

atio
n

+
G

rad
ien

t ca
lcu

la
tio

n

Updated
weight

Fo
rw

ard

Input Image

Chips with
variation

Training
data

• The feedforward propagation
(inference) is first performed on-chip

• backpropagation and weight update
are done off-chip by software.

• finally, the memory cells will be
reprogramed to the new weights
possibly with write-verify

Fig. 8. Dataflow of on-chip fine-tune

Threaten Pattern

Software train w/o variation model0

chip1 chip2

read

model1

Retrain (finetune): Recover accuracy

Adversarial Attack Demonstration

Case1: Software attack
model0

apply to
chip1

Case2: Software attack
model1

apply to
chip1

Attack original model

Attack retrained digital model

Case3: hybrid attack
chip2

apply to
chip1

Attack retrained chip

Network Finetune

Hybrid attack: on-chip inference
+ software backpropagation

Motivation

Trained software model
or on-chip model

X=X+δX

Adversarial samples

Adversarial attack

inference

Adversarial samples
misclassified

or

Network Finetune：

 Train a network without variation, saved as model0

 Load model0 to chip1 which has a set of ADC

variation specified for it. Fine-tune the network to

recover the accuracy.

 Load model0 to chip2 which has a set of ADC

variation specified for it. Fine-tune the network to

recover the accuracy.

Case1: Attack original model:

 Attack model0, which is the pure digital network, to

generate a set of images: adversarial examples

 Apply adversarial examples to chip1

Case2: Attack retrained digital model:

 Read the digital weights on chip1 out and load it to

network in pure digital version. In this case the digital

model knows nothing about the adc offset and thus

will experience performance degradation, we call this

as model1.

 Attack model1, which is the pure digital network, to

generate a set of images: adversarial examples

 Apply adversarial examples to chip1

Case3: Attack retrained chip：

 Attack chip2, which is a hybrid process that inference

is performed on chip and backpropagation is

calculated by software, to generate a set of images:

adversarial examples

 Apply adversarial examples to chip1

Fig. 9. Threaten Pattern of adversarial attacks

Fine-tune with ADC offset
• CIFAR-10 image classification on a

VGG-8 model with 8-bit and the
weight is 2-bit.

• Fig. 10 (a) (b) shows the retrain
curve(training accuracy) of Flash-ADC
and SAR-ADC with different W/L (thus
different offset) for one specific chip.

• Flash-ADC has a very small initial
accuracy drop and could be retrained
to recover the accuracy,

• SAR-ADC and evaluate its impact on
retrain performance. It is seen that as
the W/L decreases, it will be more
difficult to retrain the model to
recover the accuracy under process
variations.

• we run several retrain tests to show
that the trend recovery of accuracy is
not a one-time coincidence (Fig. 10 (c)
(d))

Fig. 10. (a) (b) retrain curve of chip with ADC offset. (c) accuracy distribution
before retrain. (d) accuracy distribution after retrain

Evaluation Result: Accuracy Results

Conclusion

• In this work, the threats of adversarial attacks on CIM-based machine
learning edge inference engine are identified.

• We first explore ADC offset modeling in CIM designs and proposed an
on-chip finetune scheme against adversarial examples.

• Our evaluation results show that by utilizing the ADC offset, the DNN
model could be retrained to maintain high accuracy.

• Accompanied by accuracy recovery, updated weights on chip will vary
from chip to chip. The transferability of the adversarial examples are
strongly suppressed by the finetune for each chip instance.

Thank you!

14

