IEEE NVMSA 2021

The 10th IEEE Non-Volatile Memory Systems and Applications Symposium August 18-20, 2021, Virtual Conference

A Novel Multi-Context Non-Volatile Content-Addressable Memory Cell and Multi-Level Architecture for High Reliability and Density

Xian Wang[‡], Deming Zhang^{†,*}, Kaili Zhang^{†,*}, Erya Deng[†], You Wang^{*} and Weisheng Zhao^{†,*}

[‡]School of Electronic and Information Engineering, Beihang University, Beijing 100191, China [†]Fert Beijing Institute, MIIT Key Laboratory of Spintronics, School of Integrated Circuit Science and Engineering, Beihang University, Beijing 100191, China

* Hefei Innovation Research Institute, Beihang University, Hefei 230013, China

Email: zy1902302@buaa.edu.cn deming.zhang@buaa.edu.cn

2

3

Proposed MCC for High Reliability and Speed

Proposed MLA for High Reliability and Density

Introduction

Proposed MCC for High Reliability and Speed

Proposed MLA for High Reliability and Density

4 Conclusion

2

3

Introduction

[1] M. Wang, W. Cai, D. Zhu, Z. Wang, J. Kan, Z. Zhao, K. Cao, Z. Wang, Y. Zhang, T. Zhang et al., "Field-free switching of a perpendicular magnetic tunnel junction through the interplay of spin-orbit and spin-transfer t orques," Nature electronics, vol. 1, no. 11, p. 582, 2018, doi: 10.1038/s41928-018-0160-7.
[2] W. Zhao, L. Torres, Y. Guillemenet, et al. Design of MRAM based logic circuits and its applications[C]//Proceedings of the great lakes symposium on Great lakes symposium on VLSI, 2011: 431-436.

Introduction

[3] Y. Zhang, W. Zhao, J. Klein, D. Ravelsona and C. Chappert, "Ultra_x0002_High Density Content Addressable Memory Based on Current In_x0002_duced Domain Wall Motion in Magnetic Track," in IEEE Transac_x0 002_tions on Magnetics, vol. 48, no. 11, pp. 3219-3222, Nov. 2012, doi: 10.1109/TMAG.2012.2198876.

[4] A. Shaban, S. Ahmad, N. Alam and M. Hasan, "Compact and Reliable Low Power Non-Volatile TCAM Cell," 2018 8th International Sympo_x0002_sium on Embedded Computing and System Design (ISED), pp. 100-1 04, 2018, doi: 10.1109/ISED.2018.8704013.

[5] E. Deng, L. Anghel, G. Prenat and W. Zhao, "Multi-context non_x0002_volatile content addressable memory using magnetic tunnel junctions," 2016 IEEE/ACM International Symposium on Nanoscale Architectures (N ANOARCH), pp. 103-108, 2016, doi: 10.1145/2950067.2950106.

Introduction

[6] S. Matsunaga, A. Katsumata, M. Natsui and T. Hanyu, "Design of a Low-Energy Nonvolatile Fully-Parallel Ternary CAM Using a Two-Level Segmented Match-Line Scheme," 2011 41st IEEE Interna_x0002_tional Sy mposium on Multiple-Valued Logic, pp. 99-104, 2011, doi: 10.1109/ISMVL.2011.41.

Introduction

2

3

Proposed MCC for High Reliability and Speed

Proposed MLA for High Reliability and Density

4 Conclusion

Proposed multi-context cell (MCC)

> Explanation:

- 1. M denotes the amount of levels in the MLA;
- 2. N denotes the amount of bits per level in the MLA;
- 3. i denotes the number of bit in a word;
- 4. j denotes the number of word in a NV-CAM.

Schematic of the proposed multi-context cell (MCC) circuit and (b) the SEN generator circuit

The write operation

The write operation

The search operation

The search operation

The search operation

Performance Evaluation

- Simulation conditions:
 - 1. A physics-based STT-MTJ compact model [7];
 - 2. A commercial CMOS 40 nm design kit.

CRITICAL PARAMETERS FOR THE PROPOSED NV-CAM

Parameter	Description	Default Value
L	Length of the transistors	40 nm
W	Width of the transistors	120 nm
D	Diameter of MTJ nanopillar	40 nm
TMR(0)	TMR ratio at 0 V _{bias}	1.5
Tfree	Thickness of free layer	1.3 nm
Toxide	Thickness of oxide layer	0.85 nm
R·A	Resistance-area product	$5 \Omega \cdot \mu m^2$
ΔTMR	Variation of TMR ratio	0.03
ΔT_{free}	Variation of free layer thickness	0.03
ΔT_{oxide}	Variation of oxide layer thickness	0.03
a	Length of MTJ	40 nm
b	Width of MTJ	40 nm
V _{DD}	Voltage supply	1 V

Performance graph of the proposed and previous scheme

[7] Y. Wang, Hao Cai, Lirida Alves de Barros Naviner, Yue Zhang et al., "Compact Model of Dielectric Breakdown in Spin-Transfer Torque Mag_x0002_netic Tunnel Junction," in IEEE Transactions on Electron Devices, vol. 63, no. 4, pp. 1762-1767, April 2016, doi: 10.1109/TED.2016.2533438.

Introduction

2

3

Proposed MCC for High Reliability and Speed

Proposed MLA for High Reliability and Density

4 Conclusion

Proposed multi-level architecture (MLA)

✓ Level I is matched, level II is performed

 ✓ Level I is mismatched, level II is idle

Schematic of a $4 \times 2N$ NV-CAM in the proposed multi-level architecture (MLA)

Performance Evaluation

Performance Evaluation

> Amount of transistors per bit: 11/M+3

Case III:

(d) Performance of a 1×144 NV-CAM with different M

Introduction

2

3

Proposed MCC for High Reliability and Speed

Proposed MLA for High Reliability and Density

Conclusion

> A multi-context cell (MCC) circuit by employing an output selector (OS) instead of a logic tree (LT)

- Improve the reliability and bit search speed by <u>reducing transistors' amount</u> in discharge branches.
- Improve the area efficiency by integrating multiple DMCs in one NV-CAM cell.
- TMR, T_{PCSA} , T_{MLS} and V_{DD} are set to be 150 %, 240 nm, 240 nm and 1 V, respectively.
- > A SEN generator to realize the multi-level architecture (MLA) for NV-CAM
 - Improve the reliability and word search energy by bringing inessential search operations to idle state.
 - The cost of search delay is <u>little</u>.
 - Improve the performance of NV-CAM by <u>increasing levels' amount</u>.

Thanks for your attention

Email: zy1902302@buaa.edu.cn deming.zhang@buaa.edu.cn