
Approximate Programming Design for Enhancing
Energy, Endurance and Performance of Neural

Network Training on NVM-based Systems

Chien-Chung Ho1,2, Wei-Chen Wang3, Te-Hao Hsu1,
Zhi-Duan Jiang1, and Yung-Chun Li3

The 10th IEEE Non-Volatile Memory Systems
and Applications Symposium, NVMSA 2021

1 National Chung Cheng University
2 National Cheng Kung University
3 Macronix International Co., Ltd.

Outline

• Introduction
– Background and Motivation

• AppWOM: Approximate WOM Code Method
• Performance and Experiment
• Conclusion

Neural Network Trends

Forward Propagation Backward Propagation

Input or Intermediate Data

Weight Bias

Multiply–Accumulate (MAC)

The large leakage power, insufficient memory density and scaling
difficulty issues restrict the development of DRAM-based NN systems

• NNs reveal a significant impact in many different applications/domains
– E.g., object detection and image recognition

• The usage of NN can be divided into two phases:
– Training phase: weight and bias are trained with abundant training data

• Forward and backward propagations
– Inference phase:

• Forward propagation only

• Limitation of training NN over DRAM-based systems:
– Low density
– High unit cost
– Significant leakage power

Potential of NVM-based
Training Solutions

• To address issues of DRAM-based NN trainings, NVM-based
systems, e.g., phase change memory (PCM), gradually grab
people’s attention due to their good properties
– Large memory density
– Near-zero leakage power
– Short read latency

• However, PCM has some inherent drawbacks, compared to DRAM
– Higher program energy
– Worse endurance
– Longer write latency

4

A PCM Array

The Asymmetric Write Issue

Thus, this work aims at Enhancing Energy, Endurance and
Performance of Neural Network Training on NVM-based Systems

How PCM Issues
are handled?

• The write asymmetric issue is due to the two write operations
– RESET program PCM cells from ‘1’ to ‘0’

• Shorter write latency but more energy consumption
– SET programs PCM cells from ‘0’ to ‘1’

• Longer write latency but less energy consumption

• “PreSET” proposes to proactively invoke SET all the data bits
into ‘1’s during memory bank idle period
– It only executes RESET operation during the memory write period
– It effectively enhances the write performance

• PreSET however generates a large number of bit flips on
PCM cells
– It thus incurs the energy consumption and lifetime issues

5

SET: 10, RESET: 10
Total Bit Flip: 20
Total Energy: 340J

1 1 1 1 1 1 1 1
0 0 0 1 1 0 1 1
0 0 0 1 1 0 1 1

1 1 1 1 1 1 1 1
1 1 1 0 1 1 1 0
1 1 1 0 1 1 1 0

1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1

1 1 1 1 1 1 1 1

Initial State
1st Data

Write

2nd Data
Write

3rd Data
Write

Raw Data Write
(with PreSET)

PreSET

PreSET

PreSET

Write-Once Memory SET
(WOM-SET)

• Write-once memory (WOM) code
– A “<𝑣>𝑡/𝑛 WOM-code” is a coding scheme that uses 𝑛 bits

to represent one of 𝑣 values so that the WOM can be written
in a total of 𝑡 times

• WOM-SET combines both advantages of WOM code
and PreSET method to improve not only write
performance but also write energy efficiency
– Encode every two-bit data into three-bit data
– Program the three-bit encoded data on PCM cells
– Apply PreSET to cells after the 2nd write is finished

010 100001

101 011110

01 10 11

111

000
00

01 10 11

00

1st Write

2nd Write

<2>2/3 WOM-code Example

Comparison on Energy
and Bit-flips

• Baseline approach provides an energy-efficient solution, but it encounters the uneven bit-flip distribution issue
• WOM-SET decreases the number of bit flips and limits the energy consumption without sacrificing the write

performance, compared to the basic and PreSET approaches

7

Raw Data Write
(without PreSET)

Raw Data Write
(with PreSET)

WOM-SET
(with PreSET)

Initial State

1st Data
Write

2nd Data
Write

SET: 02, RESET: 03
Total Bit Flip: 05

Total Energy: 88J

0 1 0 1

1 0 0 0

0 0 1 00 0 1 0

PreSET

0 1 0 1

1 1 1 1

1 0 0 0

PreSET

1 1 1 1

0 0 1 00 0 1 0
SET: 05, RESET: 06

Total Bit Flip: 11
Total Energy: 190J

0 0 1 0 0 1

1 1 1 1 1 1

1 1 0 1 1 1

0 0 0 1 0 1
SET: 04, RESET: 04

Total Bit Flip: 08
Total Energy: 136J

PreSET

WOM-SET could result in the space overhead
and then lead to the worse endurance problem on PCM

Is WOM-SET Applicable
to NN Training?

• Statistic of bit result of weights and biases when DenseNet-BC is trained on CIFAR-
10 dataset, and it is found that
– The bit-flip on MSBs accumulates unevenly
– The bit-flip on LSBs accumulates very balanced

• The number of bit-flip accumulation among encoded LSBs are very large when
applying WOM code for training NNs on NVM-based system
– Energy consumption and endurance issues of NVM-based system with adopting WOM code can

be still deteriorated

8

IEEE-754 floating point

MSB (Bit 31) LSB (Bit 0)

A novel WOM code programming design with considering NNs’
training properties is needed to tackle these issues

Observation and Motivation

• Observations
– The number of total bit flips is dominated by the mantissa part
– LSBs of weights and biases are more vulnerable to alter, compared to that of MSBs

• NN is well-known for its approximate computing and fault tolerance properties
– It uses a lot of data to train and then features to judge the result

• This motivates us to propose an approximating WOM code design with exploiting
approximate or fault tolerance property, so as to
– To skilfully create more write chances for WOM encoding processes by ignoring some updates on

the less important data
– To effectively reduce the number of total bit flips over all PCM cells
– To cautiously maintain and balance the even bit-flip accumulation for all PCM cells

It implies the energy, endurance and performance of NVM-based training can
be enhanced if accumulation rate of bit flip on LSBs can be effectively eased

Outline

• Introduction
• AppWOM: Approximate WOM Code Method
– Design Concept
– AppWOM: Approximate WOM Code Method
–Wear-aware Ping Pong Policy

• Performance and Experiment
• Conclusion

Design Concept of AppWOM

• The main idea is to reserve the update chances of less important bits for serving the
oncoming updates on the more important bits
– The less important bits: the latter 11 bits of mantissa
– The more important bits: the former 11 bits of mantissa

• Bits of weights and biases are partitioned, regrouped, and stored on the NVM
– The first bit of both groups are grouped together, the second bit of both

groups are grouped together, and so on

sign exponent
mantissa

Apply AppWOM CodeApply conventional WOM Code

3 bits 3 bits ... 3 bits 3 bits 3 bits3 bits
...
...

Weight/Bias
Data

NVM

...

M1 M3 M5 M7 M9 M11 M13 M15 M17 M19 M21 M23

S M
2

M
4

M
6

M
8

M
10

M
12

M
14

M
16

M
18

M
20

M
22E1 E2 E3 E4 E5 E6 E7 E8

Less important bitsMore important bits

• AppWOM updates the encoding state
for the encoded group only when the
important bit or both of two bits need
to be updated
– It keeps the encoding state unchanged

and ignore the update request when it only
needs to update the unimportant bit of
encoded groups

– Some path of original WOM code can be
discarded according to the above rules

• AppWOM code method can be derived
by the following steps:

0. Original state:

12

AppWOM Code Method

010 100001

101 011110PreSET
State

01 10 11

111

000
00

01 10 1100

1st Write
2nd Write

PreRESET
State

• AppWOM updates the encoding state
for the encoded group only when the
important bit or both of two bits need
to be updated
– It keeps the encoding state unchanged

and ignore the update request when it only
needs to update the unimportant bit of
encoded groups

– Some path of original WOM code can be
discarded according to the above rules

• AppWOM code method can be derived
by the following steps:

1. Remove the paths which represent the
change on only the unimportant bit:

13

AppWOM Code Method

010 100001

101 011110PreSET
State

01 10 11

111

000
00

01 10 1100

1st Write
2nd Write

PreRESET
State

• AppWOM updates the encoding state
for the encoded group only when the
important bit or both of two bits need
to be updated
– It keeps the encoding state unchanged

and ignore the update request when it only
needs to update the unimportant bit of
encoded groups

– Some path of original WOM code can be
discarded according to the above rules

• AppWOM code method can be derived
by the following steps:

2. Remove the unused states:

14

AppWOM Code Method

001

101 011PreSET
State

01

111

000
00

10 1100

1st Write
2nd Write

PreRESET
State

• AppWOM updates the encoding state
for the encoded group only when the
important bit or both of two bits need
to be updated
– It keeps the encoding state unchanged

and ignore the update request when it only
needs to update the unimportant bit of
encoded groups

– Some path of original WOM code can be
discarded according to the above rules

• AppWOM code method can be derived
by the following steps:

3. Rearrange states to achieve AppWOM10:
AppWOM10 is used to serve updates on
PCM cells being applied with PreSET
operations, i.e., all bits are ‘1’.

15

AppWOM Code Method

001

101 011PreSET
State

01

111

000
00

10 1100

1st Write
2nd Write

PreRESET
State

• AppWOM updates the encoding state
for the encoded group only when the
important bit or both of two bits need
to be updated
– It keeps the encoding state unchanged

and ignore the update request when it only
needs to update the unimportant bit of
encoded groups

– Some path of original WOM code can be
discarded according to the above rules

• AppWOM code method can be derived
by the following steps:

4. Reverse direction to achieve AppWOM01:
AppWOM01 is used to serve updates on
PCM cells being applied with PreRESET
operations, i.e., all bits are ‘0’

16

AppWOM Code Method

110

010 100PreRESET
State

01

000

111
00

10 1100

1st Write
2nd Write

PreSET
State

Example of Using AppWOM Code

SET: 10, RESET: 10
Total Bit Flip: 20
Total Energy: 340J

SET: 07, RESET: 11
Total Bit Flip: 18
Total Energy: 318J

SET: 00, RESET: 12
Total Bit Flip: 12
Total Energy: 240J

1 1 1 1 1 1 1 1
0 0 0 1 1 0 1 1
0 0 0 1 1 0 1 1

1 1 1 1 1 1 1 1
1 1 1 0 1 1 1 0
1 1 1 0 1 1 1 0

1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 0 1 0 1 0 1 1
0 0 0 1 1 0 1 1

0 1 1 0 1 0 1 0 0 0 1 0
1 1 1 0 1 1 1 0

1 1 1 1 1 1 1 1 1 1 1 1

1 1 0 1 1 0 1 1 0 1 1 0
0 1 0 1 0 1 0 1

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 0 1 0 1 1
0 0 0 1 1 0 1 1

0 1 1 1 0 1 1 0 1 0 1 1
1 1 1 0 1 1 1 0

0 0 1 0 0 1 0 0 1 0 0 1
0 1 0 1 0 1 0 1

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 1 0 0
0 0 0 1 1 0 1 1

1 0 0 0 1 0 0 1 0 1 0 0
1 1 1 0 1 1 1 0

1 1 0 1 1 0 1 1 0 1 1 0
0 1 0 1 0 1 0 1

1 1 1 1 1 1 1 1 1 1 1 1
SET: 12, RESET: 00
Total Bit Flip: 12
Total Energy: 168J

Initial State
1st Data

Write

2nd Data
Write

3rd Data
Write

PreSET

Raw Data Write
(with PreSET)

WOM
(with PreSET)

AppWOM10
(with PreSET)

AppWOM01
(with PreRESET)

PreSET

PreSET

PreSET

PreRESET PreSET

0/1 0/1 0/10/1: Written data : 1st WOM programmed cell : 2nd WOM programmed cell: Nonencoded cell

Wear-aware Ping Pong Policy - 1

• A wear-aware ping pong policy is proposed to control the flip of all PCM cells
– To allow the proposed AppWOM10 and AppWOM01 codes be smoothly applied on cells with the

different initial states

• All the PCM cells will be divided into two regions in our target environment
– Cells of PreSET region are initiated with PreSET operation (i.e, value state “1”)
– Cells of PreRESET region are initiated with PreRESET operation (i.e, value state “0”)

All cells are in “SET” state

0 0 ... 0 00 0 0

All cells are in “RESET” state

1 1 ... 1 11 1 1

Wear-aware Ping Pong Policy - 2

• Taking cells of PreSET region as an example:
• These PCM cells will be gradually turned into the opposite value, i.e., from “1” to “0”
• After being nth updated by the AppWOM10 code

– The wear-aware ping pong policy applies PreRESET to the PCM cells which remain in the data
state ‘1’ and forcedly turn these used PCM cells to the opposite value so as to evenly exhaust their
bit-flip usage

All cells are in “SET” state

1 0 ... 1 01 0 1
1st AppWOM10 update

1 0 ... 1 01 0 0
2nd AppWOM10 update

nth AppWOM10 update
0 0 ... 1 01 0 0

...

0 0 ... 0 00 0 0

All cells are in “RESET” state

Apply PreRESET

on cells remain in “1”

1 1 ... 1 11 1 1 1 0 ... 1 11 1 0
Apply PreSET

on cells remain in “0”

1st AppWOM01 update

1 0 ... 1 00 0 0
2nd AppWOM01 update

1 0 ... 1 10 1 0
nth AppWOM01 update

...

G
ra

du
al

ly
 fl

ip
 b

its

fr
om

 “
1”

 to
 “

0” G
radually flip bits
from

 “0” to “1”

Outline

• Introduction
• AppWOM: Approximate WOM Code Method
• Performance and Experiment
• Conclusion

• Evaluation metrics
– Bit-flip accumulation
– Energy consumption
– Lifetime (number of weight updates)
– Performance (write latency)

• Approaches in Comparison:
– PreSET: PCM-based system with adopting

PreSET
– PreRESET: PCM-based system with adopting

PreRESET
– WOM-SET: PCM-based system with

adopting WOMSET
– AppWOM: PCM-based system with adopting

AppWOM

• Parameters of evaluated NNs

• Parameter setups of the adopted PCM

Experiment Setups

Read latency 125ns Read energy 2pJ/bit

SET latency 1μs SET energy 13.5pJ/bit

RESET latency 125ns RESET energy 19.2pJ/bit

Endurance 108 Capacity 32GB

NN
Model

Dataset Base
Learning Rate

Mini-batch
Size

Number of
Iteration

LeNet MNIST 0.1 128 47k

GoogLeNet MNIST 0.001 256 58k

DenseNet-BC CIFAR-10 0.0001 256 50k

Bit-flip Accumulation Results

• The bit-flip number of the proposed approach can be decreased by up to 14%
– The reduction of bit-flip count is especially remarkable on the least significant bits with the

support of approximate WOM code method and wear-aware ping pong update policy

Energy Consumption Results
• Comparing to the PreSET, PreRESET, and WOM-SET approaches, the energy consumption of our

proposed AppWOM design can be effectively reduced by up to 57%, 61%, and 20%, respectively

0

100

200

300

400

500

600

LeNet GoogLeNet DenseNet-BC

En
er

gy
 C

on
su

m
pt

io
n

(p
J/

ite
ra

tio
n)

PreSET PreRESET WOM-SET AppWOM

• Comparing to other three approaches, the endurance results of PCM with adopting AppWOM and
wear-aware ping pong update policy are improved by up to 42%, 78%, and 78% respectively

– This is because of the balance of uneven writes and reduction of redundant writes.

Endurance Results

0.E+0

1.E+9

2.E+9

3.E+9

4.E+9

5.E+9

6.E+9

LeNet GoogLeNet DenseNet-BC

N
um

be
r o

f
W

ei
gh

t U
pd

at
es

PreSET PreRESET WOM-SET AppWOM

Performance Results

0

200

400

600

800

1000

1200

LeNet GoogLeNet DenseNet-BCAv
er

ag
e

W
rit

e
La

te
nc

y
(n

s)

PreSET PreRESET WOM-SET AppWOM

• Comparing to the PreRESET approach, it is observed that our proposed approximate programming
design can effectively get 31% – 46% reduction of the average write latency

– Our proposed design wisely exploits the PreSET and PreRESET operations, and could achieve the decent write
performance when every write request comes

Outline

• Introduction
• AppWOM: Approximate WOM Code Method
• Performance and Experiment
• Conclusion

Conclusion
• An AppWOM method and a wear-aware ping pong update policy are

proposed to skillfully create more write chances for WOM encoding
processes by ignoring some updates on the less important data

• The proposed design effectively reduces the number of total bit flips and
cautiously maintains the even bit-flip accumulation for all PCM cells

• The experiment results demonstrate that we could:
– Improve the energy consumption by up to 61%
– Enhance the endurance and write speed by up to 78%, and 46% respectively

• The proposed NVM-based design could enable neural network training
with not only high density but also high performance

27

Question & Answer

Thank you for your attention

Contact Information:

Wei-Chen Wang
raymondwang@mxic.com.tw

Chien-Chung Ho
ccho@gs.ncku.edu.tw

