
An Empirical Study of NVM-based File System
Hongwei Duan, Liang Shi, Qingfeng Zhuge, Edwin Hsing-Mean Sha, Changlong Li, Yujiong Liang

Big Data & Intelligent System Laboratory
East China Normal University

Shanghai, China
hwduan@stu.ecnu.edu.cn, {lshi, qfzhuge, edwinsha}@cs.ecnu.edu.cn, liclong@mail.ustc.edu.cn, lsyjfancy@gmail.com

Abstract—Emerging byte-addressable, non-volatile memory
provides opportunities for preserving files in memory. However,
there is no systematic performance study across different file
systems. This paper evaluates the performance of modern NVM-
based file systems (e.g., PMFS, SIMFS, and NOVA) with a
series of preliminary studies. Several interesting findings are
concluded with our study, which should be well considered by
file system designers during the employment. Furthermore, this
paper explores the visualization of NVM-based file systems and
develops NVMPlayer. To the best of our knowledge, this is the
first graphical tool to display the internal mechanisms of NVM-
based file systems. It demonstrates how visualization can help us
shed light on the complex phenomena in NVM-based file system
and expose new opportunities for optimization.

Index Terms—non-volatile memory, file system, in-memory file
systems, performance, wear leveling, visualization

I. INTRODUCTION

Emerging non-volatile memory (NVM) technologies such
as spin-torque transfer, phase change, resistive memories
[1,2,3] and 3D XPoint promise to revolutionize I/O perfor-
mance. The utilization of NVMs based on these technologies
as the persistent media at memory level, is attracting more
and more interest from both academia and industry [4,5]. The
most popular approach is to place NVMs on the processor
memory bus alongside conventional DRAM, leading to hybrid
volatile/non-volatile main memory architecture. Combining
faster, volatile DRAM with slightly slower, denser non-volatile
main memories (NVMMs) offers the possibility of storage sys-
tems that combine the best characteristics of both technologies.

Conventional file systems are not suitable for hybrid mem-
ory systems because they are built for the performance charac-
teristics of disks and rely on disks’ consistency guarantees for
correctness [6]. To exploit the high performance of NVM and
efficiently support more flexible access patterns, researchers
and companies have developed several file systems designed
specifically for NVMM. Other works have adapted existing file
systems to NVMM by adding DAX support [7]. The common
practice of these NVMM-based file systems are bypassing the
page cache and the block-based I/O software stack, where
the POSIX interface usually needs to search the metadata
in DRAM. With a new mmap interface, CPU can load/store

This work is supported by the NSFC 62072177 and 61972154, Shanghai
Science and Technology Project (20ZR1417200) and the Fundamental Re-
search Funds for the Central Universities. The corresponding author is Liang
Shi (lshi@cs.ecnu.edu.cn).

NVMM directly according to the mapping without searching
the metadata. This interface is also known as the DAX-mmap.
The high performance makes this interface play an important
role in the NVMM-based file system. However, there exists
no systematic performance study across different file systems.

This paper evaluates the performance of NVM-based file
systems under various real-world workloads on NVM. We
selected commonly used server-class workloads such as web-
server, fileserver, webproxy as they differ from each other
in terms of data access patterns, metadata-data ratios, etc.
We evaluated and compared the results of above workloads
on NVM-based file systems - SIMFS, NOVA, PMFS. From
these evaluations, several interesting observations are found,
which are helpful for future system designs: (1) Some NVM-
based file systems that use journaling for metadata updates
may suffer performance degration with the directory width
increasing. (2) Continuously increasing the number of threads,
the performance will be worse, so we should limit the num-
ber of threads. (3) Different access pattens have different
thread saturation point. Multithreading may improves read
performance, especially sequential read, not necessarily write
performance. Usually sequential read has the highest saturation
point, followed by random read. (4) When access granularity
is too small, the latency of NVM-based file systems increases
sharply.

The increasing complexity of state-of-the-art NVM man-
agement justifies the adoption of new research and analysis
techniques. Just as graphs illustrate phenomena that are hard
to identify in tables, and just as one picture is said to be worth
a thousand words, we claim that one video is worth a thousand
histograms. To establish this claim, we developed NVMPlayer,
an graphical tool for visualizing data layout and movement
on NVM. This tool will give us a better understanding of
how our data gets from one place to another and why. It also
encouraged our use of NVMPlayer for educational purposes in
undergraduate courses and projects, and for the presentation of
new ideas and designs in academic conferences and industrial
collaboration meetings.

In the rest of this paper, Section II presents the background
and related work. In Section III, we will introduce the exper-
imental environment and testing tools. We then summarize
and analyze the key results in Section IV. We introduce
NVMPlayer in Section V. Finally, section VI is the conclusion
and future work.

978-1-6654-2375-5/21/$31.00 ©2021 IEEE

II. BACKGROUND AND RELATED WORK

In this section, we will introduce some background on
NVM-based file systems and related work which is close to
our work.

A. NVM-based File Systems

To exploit the high bandwidth, low latency, and byte-
addressable features of NVM devices, new NVM-aware file
systems such as PMFS [8], SCMFS [9], Ext4-DAX , NOVA
[10], SIMFS [11] and Ziggurat [12] etc, start to emerge to
support the new NVM-based systems. The common practice of
these NVM-based file systems is to bypass the page cache and
block-based I/O software stack. This is enabled by a technique
called Direct Access (DAX), which allows an application
to map the pages of an NVM-backed file into its address
space and then access it via load and store instructions.
Ext4-DAX extend the original Ext4 file systems with DAX
features, respectively. SCMFS utilizes the existing memory
management module of the operating system to help mange
the file system space. PMFS is a lightweight DAX file system
that uses journaling for metadata updates. NOVA adopts the
log-structured file system techniques to exploit the fast random
access that NVMs provide. SIMFS fully utilizes the memory
mapping hardware at the file access path, which is an efficient
file system. Ziggurat is a tiered file system that combines
NVMM and slow disks to create a storage system with near-
NVMM performance and large capacity.

B. Related Work

Priya Sehgal et al. [13] concentrate on evaluating per-
formance of the following file system configurations under
different workloads on NVM: (a) default access to traditional
file system, (b) fine-tuned access to traditional file systems
through mount and format options, and (c) NVM-optimized
file system, such as PMFS. They use various in-place-update
and log-structured file systems to evaluate traditional file
systems. Yang Li et al. [19] compare some NVMM file
systems such as PMFS and NOVA with several mainstream
traditional file systems. Then, they evaluate these file systems
with specific workloads and analyze the experimental results
to draw some insightful conclusions.

In 2015, Gala Yang et al. developed SSDPlayer [14], a
graphical tool for visualizing the various processes that cause
data movement on SSDs,

However, as far as we know, there is no systematic perfor-
mance study across different emerging file systems mentioned
above. Additionally, SSDPlayer is unsuitable for the study of
NVM-based file system.

III. EXPERIMENT SETUP

In this section, we compare three typical existing file
systems, SIMFS, NOVA and PMFS on performance. First,
we present the micro-operation results obtained by standard
benchmark FIO [16] and Filebench [17]. Then, we show the
macro-operation results including application workloads. The
experimental results show that SIMFS outperforms other file

systems, including NOVA and PMFS on the majority of cases.
Additionally, the experiments also show that SIMFS almost
reaches the memory bus bandwidth for large I/O size.

The experiments are conducted on a system equipped with
48GB DRAM and a 2.4 GHz Intel E5-2640 10-core processor.
We configure 16GB DRAM acting as volatile memory for
volatile data structures of the system, and use the rest of 32
GB acting as persistent memory for in-memory file systems,
including PMFS, SIMFS, and NOVA. It is important to note
that our experiments focus on file systems and do not evaluate
the different types of NVM (e.g. PCM, STT-MRAM, ReRAM
etc).

IV. EXPERIMENT RESULT AND OBSERVATIONS

This section studied the access performance of three typical
NVM-based file systems, those are PMFS, SIMFS, NOVA
from multiple aspects, including basic I/O performance, the
impact of number of threads, directory width, access granu-
larity on performance. FIO is used to generate four different
workloads, random read, sequential read, random write, and
sequential write. We also use Filebench to generate differ-
ent workloads, fileserver, webserver, varmail, webproxy. By
changing number of threads, the size of directory width, the
size of access granularity and other factors, explore the access
performance of NVM-based file system under different work-
loads. The detailed experimental methodologies and results
analysis are discussed below.

A. Throughput with Single Thread

Now, we compare the performance of file systems accessed
by a single thread. The experimental results are shown in Fig.
1. The ”Size of I/O requests” in the figures means the size of
data requested in each I/O request issued by the benchmark.
Note that from the view of FIO, it does not matter if the
target file system is on hard disk or memory. Even 1 KB/2 KB
requests are submitted to in-memory file systems, the sizes of
I/O requests are still 1 KB/2 KB. The test file size is 512MB.

As shown in Fig. 1, for sequential read, NOVA performs
best when access granularity is larger than 16KB, followed
by SIMFS, then PMFS. For sequential write, SIMFS has the
best performance when access granularity ranges from 16KB
to 128KB , followed by NOVA and PMFS. For random read,
NOVA is the best for small granularity access within 8KB, and
SIMFS is better for large granularity access. For random write,
the performance of SIMFS is the best under the small-grained
access up to 64KB, NOVA and PMFS are about the same.
With the access granularity ranging from 64KB to 256KB,
NOVA is the best. What’s more, each file system has better
read performance than write performance .

We also find that for each type of operation, the throughputs
of all file systems increase when the size of I/O requests grows
larger, as shown in Fig. 1. It is because that when the size of
I/O requests gets larger, the number of I/O requests issued by
benchmarks decreases and then the overhead of I/O system
calls reduces.

0

1000

2000

3000

4000

5000

6000

T
h
ro

u
g
h
p
u
t(

M
B

/s
)

simfs nova pmfs

(a) Sequential read

0

500

1000

1500

2000

2500

3000

3500

4000

4500

T
h
ro

u
g
h
p
u
t(

M
B

/s
)

simfs nova pmfs

(b) Sequential write

0

1000

2000

3000

4000

5000

6000

T
h
ro

u
g
h
p
u
t(

M
B

/s
)

simfs nova pmfs

(c) Random read

0

500

1000

1500

2000

2500

3000

3500

4000

4500

T
h
ro

u
g
h
p
u
t(

M
B

/s
)

simfs nova pmfs

(d) Random write

Fig. 1. Throughput comparison of three file systems with single thread.

0

10000

20000

30000

40000

50000

T
h

ro
u

g
h

p
u

t(
M

B
/S

)

simfs nova pmfs

(a) Sequential read

0

1000

2000

3000

4000

5000

6000

T
h

ro
u

g
h

p
u

t(
M

B
/s

)

simfs nova pmfs

(b) Sequential write

0
5000

10000
15000
20000
25000
30000
35000
40000

T
h

ro
u

g
h

p
u

t(
M

B
/s

)

simfs nova pmfs

(c) Random read

0

1000

2000

3000

4000

5000

Th
ro

ug
hp

ut
(M

B/
S)

simfs nova pmfs

(d) Random write

Fig. 2. Throughput comparison of three file systems with 16 threads.

B. Throughput with Multiple Threads
Fig. 2 plots the FIO throughput of different NVM-based

file systems with 16 theads. As shown in Fig. 2, we find
that when the number of threads increases, the performance of
simfs improves sharply, especially read performance, whether
sequentially or randomly, outperform NOVA and PMFS. This
can be interpretated as contributed advantages of using the
virtual address space of user process by multiple threads.

The metadata structure of PMFS and NOVA is quite differ-
ent from that of SIMFS. PMFS organizes the file data pages
by B-tree. Data accesses to a file in PMFS have large overhead
on the software search of the B-tree. A NOVA inode contains
pointers to the head and tail of its log. The log is a linked list of
4 KB pages, and the tail always points to the latest committed
log entry. NOVA scans the log from head to tail to rebuild the
DRAM data structures when the system accesses the inode
for the first time. Data accesses to a file in NOVA also have
large overhead on the software search. On the contrary, a file
in SIMFS organizes its data pages by contiguous file virtual
address space embedded into process virtual address space.
Thus, the data accesses to such a file have little overhead on
the search of metadata.

C. Performance of Metadata Operations
Now we measure the performance of metadata operations

of NOVA, PMFS, and SIMFS using Filebench.
We use default settings for all the workloads except that

the number of thread is set as 1. In the workloads, the mean
number of files in the same directory is set to 100 except for
listdir, which is 5.

The experimental results of metadata operations are shown
in Fig. 3. We find that SIMFS outperforms NOVA and PMFS
on the majority of cases. Compared with PMFS and NOVA,
SIMFS also obtains much better performance on createfiles,
stafiles and listdirs, and achieves about the same performance

0

200000

400000

600000

800000

1000000

1200000

openfiles createfiles makedirs statfiles delete listdirs removedirs

T
h
ro

u
g
h
p

u
t(

IO
P

S
)

simfs nova pmfs

Fig. 3. Metadata operations .

on other cases except the openfiles. Compared with NOVA,
the performance of SIMFS is a little weaker. It is because
that SIMFS directly locates the address of inode of a file with
an index, i.e., the inumber, whereas PMFS walks through the
B-tree to seek an inode. Although SIMFS has to insert the
file page table into the process page table in open operation,
SIMFS is just slightly slower (about 0.9 percent) than NOVA
on openfiles.

D. Filebench Application Load

We evaluate the performance of four multi-threaded appli-
cation workloads produced by Filebench. We use the default
settings for the four workloads.

Fig. 4 plots the Filebench throughput of different NVM-
based file systems. As shown in Fig. 4, SIMFS performs
slightly worse than NOVA under WebProxy loads and is the
best under other loads. The performance of SIMFS is 1.04
times (for varmail) to 1.05 times (for webserver) , and 1.88
times (for fileserver) better than those of PMFS. Besides, the

0

20000

40000

60000

80000

100000

120000

fileserver webproxy webserver varmail

T
h
ro

u
g
h
p

u
t(

IO
P

S
)

simfs nova pmfs

Fig. 4. Filebench application load .

performance improvement of SIMFS over NOVA ranges from
5 percent (for webserver) to 43.3 percent (for fileserver).

The performance improvement of SIMFS obtained from
the simplified metadata structures and the use of file virtual
address space and MMU, which can be refered in paper [11].

The variation of performance improvement over different
workloads is caused by the characteristics of the workload. For
example, the performance improvement of fileserver and web-
server is higher than that of varmail. It is because that fileserver
and webserver commits more data accesses and less metadata
operations than varmail does, and SIMFS gains significant
performance improvement from data accesses. Webproxy has
a deep directory depth, and the metadata management strategy
that NOVA designs for NVM can help it to find the target files
much faster.

E. The Impact of Directory Width on Performance of File
System

Fig. 5 plots the Filebench throughput of different NVM-
based file systems with different directory width.

As shown in Fig. 5, with the directory width increasing,
the throughput of SIMFS change a little, followed by NOVA,
while the throughput of PMFS decreases sharply. We can con-
clude that SIMFS is the least sensitive to increasing directory
width, with little performance change, and PMFS performs the
worst. This is because that with the directory width increasing,
the directory depth decreases. When the directory depth is less
than 1, all the files are contained within one large directory.
The performance of such a fileset depends on how lookup and
other metadata operations are handled in large directories. We
found that SIMFS and NOVA use hash tree (indexed directory)
to store directory entries while PMFS do not, and hence they
perform badly.

Finding 1: Some NVM-based file systems that use journal-
ing for metadata updates may suffer performance degration
with the directory width inereasing.

F. The Impact of Number of Threads on Performance of File
Syetem

In this subsection, we show the performance of in-memory
file systems accessed by multiple threads. The experiments are

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

1000000 1500000 2000000 2500000 3000000

T
h
ro

u
g
h
p

u
t(

IO
P

S
)

Directory width

simfs nova pmfs

Fig. 5. Webproxy .

conducted by FIO benchmarks, where threads may read/ write
the same file. The sizes of the files are set to 512MB in the
experiments.

Fig. 6 and Fig. 7 show the experimental results of SIMFS
and NOVA with multiple threads respectively, where the
vertical axes show the aggregated throughputs of threads. The
number of threads in the tests is from 2 to 32. As each thread
has its own submission queue (SQ) and completion queue
(CQ), we use the terms ”threads” and ”queues” interchange-
ably when no confusion occurs. As shown in the Fig. 6 and
Fig. 7, usually 16 or 32 is the sufficient number of threads
to support a NVM-based file system, as the throughput of
DRAM-like NVM saturates with a very low queue depth.

One interpretation is that interrupt service routine (ISRs) are
invoked too frequently when increasing the number of threads
(queues) till 32. As NVMe supports 65536 queues, this ISR
overhead may not be acceptable in modern systems and will
be a serious issue for future NVM technologies.

As shown in Fig. 6a and Fig. 7a, we can observe that
sequential read performance improves as the numbers of
threads in the tests increase. As shown in Fig. 6c and Fig. 7c,
we can observe that the random read performance of SIMFS
improves as the number of threads in the tests increases to 16,
while NOVA’s is only 8. As shown in Fig. 6b, Fig. 6d, Fig.
7b, Fig. 7d, as the number of threads in the tests increases,
write performance isn’t improving.

We can draw the following conclusions: (1) Different file
systems have different thread saturation point, usually the
thread saturation point of SIMFS is higher than NOVA. (2)
Different access pattens have different thread saturation point,
the thread saturation point of sequential reads have the highest
saturation point, followed by random reads.

Finding 2: We observe that, continuously increasing the
number of threads can significantly hurt the average through-
put. When the thread count goes beyond the number of
threads that saturate the throughput, the performance rapidly
degrades, since the saturation point means that the bandwidth
of the given PCIe bus has already run out.

This is because more threads generating small I/O requests
are allowed to run concurrently under the block NVM. How-
ever, the throughput brought by the DRAM-like NVM by

0

10000

20000

30000

40000

50000

60000

T
h

ro
u

g
h

p
u

t(
M

B
/s

)

T2 T4 T8 T16 T32

(a) Sequential read

0

1000

2000

3000

4000

5000

6000

T
h

ro
u

g
h

p
u

t(
M

B
/s

)

T2 T4 T8 T16 T32

(b) Sequential write

0

5000

10000

15000

20000

25000

30000

35000

40000

T
h

ro
u

g
h

p
u

t(
M

B
/s

)

T2 T4 T8 T16 T32

(c) Random read

0

1000

2000

3000

4000

5000

T
h

ro
u

g
h

p
u

t(
M

B
/s

)

T2 T4 T8 T16 T32

(d) Random write

Fig. 6. Throughput comparison of SIMFS with varying number of threads.

0

10000

20000

30000

40000

50000

T
h

ro
u

g
h

p
u

t(
M

B
/s

)

T2 T4 T8 T16 T32

(a) Sequential read

0

1000

2000

3000

4000

5000

6000

T
h

ro
u

g
h

p
u

t(
M

B
/s

)

T2 T4 T8 T16 T32

(b) Sequential write

0

5000

10000

15000

20000

25000

30000

35000

40000

T
h

ro
u

g
h

p
u

t(
M

B
/s

)

T2 T4 T8 T16 T32

(c) Random read

0

1000

2000

3000

4000

5000

T
h

ro
u

g
h

p
u

t(
M

B
/s

)

T2 T4 T8 T16 T32

(d) Random write

Fig. 7. Throughput comparison of NOVA with varying number of threads.

doubling the number of threads is far less than the PCIe bus
bandwidth capacity.

Systems should minimize the number of concurrent threads
targeting a single DIMM simultaneously. An Optane DIMM’s
limited store performance and limited buffering at the iMC,
and on the DIMMs combine to limit its ability to handle
accesses from multiple threads simultaneously. We have iden-
tified two distinct mechanisms that contribute to this effect.

Finding 3: Different access pattens have different thread
saturation point. Multithreading improves read performance,
especially sequential reading, not necessarily write perfor-
mance. Usually two threads are enough to saturate NVM write
bandwidth. More threads may degrade the performance.

This can be interpreted that multiple readers can read at
the same time without locking, while multiple writers can’t
write at the same time and need locking, which increases the
software overhead.

Also we find in most situations, the performance of the
NVM device saturates with 16 or 32 threads, even with the
high-speed next generation NVMe.

G. The Impact of Access Granularity on Performance of File
Syetem

In this subsection, we evaluate the impact of access gran-
ularity on performance of file syetem by single thread. The
experiments are conducted by FIO benchmarks, where a thread
may read/ write the same file. The sizes of the files are set to
512MB in the experiments.

Fig. 8 shows the latencies of sequential and random reads
(or writes) for three file systems with the size of IO request
of 64B, 128B, 256B, 512B, 1KB, 2KB, . . . , 512KB and 1MB
respectively. As shown in Fig. 8, by this test, we can conclude
that when access granularity is lower than 256B, the latency
increases sharply. Internally, Optane DIMMs update Optane
contents at a 256B granularity. This granularity, combined with

a large internal store latency, means that smaller updates are
inefficient since they require the DIMM to perform an internal
read-modify-write operation causing write amplification. The
less locality the accesses exhibit, the more severe the perfor-
mance impact.

Finding 4: When access granularity is too small, usually
when access granularity is lower than 256B, the latency of
NVM-based file systems increases sharply.

V. NVMPLAYER

Additionally, we explore the visualization of NVM-based
file systems, and developed NVMPlayer, a graphical tool for
visualizing the various processes in NVM-based file systems.

Many wear leveling optimizations [15] [18] incur additional
internal data movement. Quantifying the write amplification
is important for analyzing the effect of such optimizations on
the performance and durability of the NVM device. However,
doing so is not always trivial and requires a deep understanding
of the interacting causes of data movement within each device.

Currently available simulators output internal state and
statistics in the form of lists, tables and histograms, from which
deriving internal processes is cumbersome and requires a great
deal of skill and imagination.

In Fig. 9, the logical page (or inode) number is written on
the left side, and the corresponding write number is written
on the right side. NVMPlayer separates pages into partitions
according to their temperature. It is used with traces in which
each input write request is tagged by a temperature tag. The
user can specify the number of partitions. For example, there
are ten temperature tags. When the temperature of one page
is in the range [1,2], one can specify it is a cold page,
warm in [3,5], and hot when the temperature is above 6, and
the migration threshold is 10. The cold page, warm page,
hot page are taged with blue, orange, red respectively. The
migration method is that you first find the free page, then find

0

1000

2000

3000

4000

5000

6000

7000

8000

L
at

en
cy

(m
ic

ro
se

c)

Sequential read Sequential write Random read Random write

(a) The latency of NOVA

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

L
at

en
cy

(m
ic

ro
se

c)

Sequential read Sequential write Random read Random write

(b) The latency of SIMFS

Fig. 8. Read/write latency under different access granularity.

Fig. 9. Wear leveling demo.

the coldest page for exchange if you cannot find one. When
the temperature of one page change, its colour may change
correspondingly, so we can clearly see the wear leveling
process. We believe much more complicated phenomena can
be identified and analyzed as visualization becomes a standard
research tool.

VI. CONCLUSIONS

The ever-increasing complexity of NVM-based systems and
their management makes it increasingly difficult to analyze
related new methods and optimizations. In this paper, we eval-
uate the performance of three typical state-of-the-art NVM-
based file systems, and several interesting observations are
concluded from the empirical evaluations, which will help
systems designers during the development of NVM-based file
systems. We also showed that a graphical illustration of data
movement processes on NVM can facilitate a much deeper
understanding of their causes and effects. We thus believe that
visualization should be a standard mechanism in the tool box
of every NVM oriented research or development team.

REFERENCES

[1] A. Akel, A. M. Caulfield, T. I. Mollov, R. K. Gupta, and S. Swanson.
Onyx: A protoype phase change memory storage array. In Proceedings
of the 3rd USENIX Conference on Hot Topics in Storage and File
Systems, HotStorage’11, pages 2-2, Berkeley, CA, USA, 2011. USENIX
Association.

[2] T. Kawahara. Scalable Spin-Transfer Torque RAM Technology for
Normally-Off Computing. Design & Test of Computers, IEEE, 28(1):52-
63, Jan 2011.

[3] S. Raoux, G. Burr, M. Breitwisch, C. Rettner, Y. Chen, R. Shelby, M.
Salinga, D. Krebs, S.-H. Chen, H. L. Lung, and C. Lam. Phase-change
random access memory: A scalable technology. IBM Journal of Research
and Development, 52(4.5):465-479, July 2008.

[4] Adrian M Caulfield and Steven Swanson. 2013. Quicksan: a storage
area network for fast, distributed, solid state disks. In ACM SIGARCH
Computer Architecture News, Vol. 41. ACM, 464–474.

[5] Joel Coburn, Adrian M Caulfield, Ameen Akel, Laura M Grupp,
Rajesh K Gupta, Ranjit Jhala, and Steven Swanson. 2012. NV-Heaps:
making persistent objects fast and safe with next-generation, nonvolatile
memories. ACM Sigplan Notices 47, 4 (2012), 105–118.

[6] T. S. Pillai, V. Chidambaram, R. Alagappan, S. Al-Kiswany, A. C.
Arpaci-Dusseau, and R. H. Arpaci-Dusseau. All File Systems Are Not
Created Equal: On the Complexity of Crafting Crash-Consistent Appli-
cations. In 11th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 14), pages 433–448, Broomfield, CO, Oct. 2014.
USENIX Association.

[7] M. Wilcox. Add support for NV-DIMMs to ext4. https:
//lwn.net/Articles/613384/.

[8] S. R. Dulloor, S. Kumar, A. Keshavamurthy, P. Lantz, D. Reddy, R.
Sankaran, and J. Jackson, System software for persistent memory,in
Proc. 9th ACM Euro. Conf. Comput. Syst., 2014, pp. 1-15.

[9] WU, X., AND REDDY, A. Scmfs: a file system for storage class
memory. In Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis (2011),
ACM, p. 39.

[10] Jian Xu and Steven Swanson. NOVA: A Log-structured File System
for Hybrid Volatile/Non-volatile Main Memories. In 14th USENIX
Conference on File and Storage Technologies (FAST 16), pages 323-
338, Santa Clara, CA, February 2016. USENIX Association.

[11] Sha H M , Chen X , Zhuge Q , et al. A New Design of In-Memory File
System Based on File Virtual Address Framework. IEEE Transactions
on Computers, 2016, 65(10):1-14.

[12] Zheng S, Hoseinzadeh M, Swanson S. Ziggurat: A Tiered File System
for Non-Volatile Main Memories and Disks. 17th USENIX Conference
on File and Storage Technologies (FAST 19). 2019: 207-219.

[13] Sehgal P , Basu S , Srinivasan K , et al. An empirical study of file
systems on NVM. Mass Storage Systems & Technologies. IEEE, 2015.

[14] Gala Yadgar, Roman Shor, Eitan Yaakobi, and Assaf Schuster. 2015.
It’s not where your data is, it’s how it got there. In Proceedings of
the 7th USENIX Workshop on Hot Topics in Storage and File Systems
(HotStorage’15).

[15] Liu Q , Varman P . Ouroboros Wear Leveling for NVRAM Using
Hierarchical Block Migration. Acm Transactions on Storage, 2017,
13(4):1-31.

[16] (2014). Fio: flexible I/O tester [Online]. Available: http://freecode.
com/projects/fio

[17] (2014). Filebench [Online]. Available: http://filebench.sourceforge. net
[18] Chen X , Sha H M , Zeng Y , et al. Efficient wear leveling for inodes

of file systems on persistent memories. 2018 Design, Automation Test
in Europe Conference Exhibition (DATE). 2018.

[19] Yang, L. , Fang L , Nong X, et al. ”File System for Non-volatile Main
Memories: Performance Testing and Analysis.” File System for Non-
volatile Main Memories: Performance Testing and Analysis 0.

