
978-1-6654-2375-5/21/$31.00 ©2021 IEEE

Designing a persistent-memory-native storage engine
for SQL database systems

Shohei Matsuura
Database Department, Service Platform Division, Technology Group

Yahoo Japan Corporation

Tokyo, Japan
shmatsuu@yahoo-corp.jp

Abstract—We illustrate the design of our in-house storage

engine for SQL database systems. The storage engine is designed

to be persistent-memory native, meaning that database and

transaction log files are placed on persistent memory and accessed

with byte granularity from the storage engine. In addition, it is

aimed to be practical in industry and highly performant with the

use of persistent memory. In this paper, we discuss five essential

requirements for such a storage engine to be practical in industry

and how they are met in our in-house storage engine.

Furthermore, we highlight two important design features, namely,

(1) the pre-fault feature and (2) the parallel-logging feature, that

have been incorporated to our in-house storage engine, to improve

its performance. By meeting the five essential requirements and

incorporating the two design features to our in-house storage

engine, we implement a persistent-memory-native storage engine

for SQL database systems, in-house, that satisfies industry

requirements and that is highly performant on write workload on

persistent memory.

Keywords—Persistent Memory, Non-volatile Memory, Database

Systems, SQL Databases, RDBMS, Storage Engine

I. INTRODUCTION

Recent introduction of byte-addressable persistent memory
such as Intel® Optane™ DC Persistent Memory has elicited
database researchers to revise the traditional architecture of SQL
database systems to the one that is more suitable for persistent
memory. As described in [12], the traditional architecture of
SQL database systems assumes that the durable storage of a
database is a non-volatile block device such as HDDs or SSDs
and that there is a large performance gap in I/Os between such a
non-volatile block device and the volatile DRAM. To hide this
performance gap in I/Os between these two devices, traditional
database systems employ techniques such as writing data to
DRAM temporarily and persisting them to a non-volatile block
device asynchronously at a checkpoint using write-ahead
logging (WAL) algorithm.

Since the introduction of byte-addressable persistent
memory, database researchers have begun actively exploring the
use of byte-addressable persistent memory as the durable
storage of a database to improve the database performance and
proposing new database architectures that are more suitable for
persistent memory. For example, the studies [7] and [8] explore
three designs for a persistent-memory-native storage engine of
SQL database systems. In industry, Oracle Corporation’s SQL
database hardware appliance, Oracle Exadata X8M-2, is now

equipped with persistent memory to accelerate transaction log
writing [6] [14]. Another example is Microsoft SQL Server
2019. It implements a feature called “Hybrid Buffer Pool”, that
directly reads data on persistent memory without loading it to
DRAM buffer in read operations and that persistent memory
serves as an extension of DRAM buffer [13].

With the use of persistent memory as the durable storage for
database systems, the performance gap between the durable
storage and DRAM becomes much smaller than ever, giving
database systems an opportunity to improve their performance.
However, the existing research in academia on persistent-
memory-native storage engines does not discuss nor present
requirements in detail for such storage engines to be practical in
industry, that is, for example, it does not consider how to deal
with the storage expansion as the data volume grows. Even in
industry, the use of persistent memory is now limited to a small
part of database operations such as logging or data buffering.
Instead, in our research, we envision to expand the use of
persistent memory further and to design a persistent-memory-
native storage engine for SQL database systems that can satisfy
industry requirements. In this paper, we discuss essential
requirements for a practical persistent-memory-native storage
engine from an industry point of view and illustrate the
architecture of our in-house storage engine satisfying them. In
addition, we present two important features in our in-house
storage engine, (1) the pre-fault feature and (2) the parallel-
logging feature, to improve the storage engine performance on
persistent memory.

The contributions of this paper are: (1) stating requirements
for a persistent-memory-native storage engine for SQL
databases to be practical in industry, (2) an illustration of the in-
house persistent-memory-native storage engine, designed at
Yahoo Japan, to meet the requirements, (3) highlighting two
important features and their effects on persistent memory to
improve the performance of the in-house storage engine.

The rest of this paper is organized as follows. Section II is
the preliminaries. Section III discusses the requirements for a
practical persistent-memory-native storage engine from an
industry point of view. Section IV and V discuss the design of
our in-house storage engine to meet the requirements and the
pre-fault feature and the parallel-logging feature. Section VI
presents the evaluation results of our in-house storage engine,
and Section VII concludes the paper by summarizing our work
and the future work.

II. PRELIMINARIES

In this section, we briefly describe the traditional
architecture of SQL database systems and existing research to
adapt database systems to persistent memory.

A. Traditional Architecture of SQL Database Systems

The traditional architecture of SQL database systems,
described in [4] and [12], is depicted in Fig. 1. Although we can
describe the architecture in more detail, we only highlight the
major components that are relevant to our discussion. A
traditional SQL database system consists of the following major
components below:

• Query Parser: This component parses users’ queries and
transform them into a form that can be passed to the next
component in query processing, Query Optimizer, for
optimizing the queries.

• Query Optimizer: This is the component to optimize
users’ queries. For example, based on the presence of an
index, it determines to use an index for data retrieval,
rather than fully scanning the entire data and filtering
out unnecessary records to form the desired result set.

• Execution Engine: This is the component to execute
users’ queries, following the direction of the query
optimizer. It requests the storage engine to perform I/Os
to the durable storage.

• Storage Engine: This component issues I/Os to the
durable storage at a request of the execution engine. The
component is also equipped with a transaction manager
and a logging & recovery manager, to provide users
with transaction support. In addition, it is equipped with
a buffer manager that uses DRAM as the buffer to hide
the I/O performance difference between the durable
storage and DRAM.

 The use of persistent memory as the durable storage for a
database makes the I/O performance between the durable
storage and DRAM closer than before, giving SQL database
systems that adapt it a good opportunity to improve their
performance. There is active research going on both in academia
and industry to revise the traditional architecture of SQL
database systems to a more optimal one for persistent memory.
Since the storage engine is the component that can get direct
benefits from it, the current research in the area mainly focuses

on re-architecting the storage engine component to the one more
suitable for persistent memory. In the next section, we highlight
some of such research both in academia and industry.

B. Existing Research to Adapt Persistent Memory

In this section, we introduce some of existing research to
adapt persistent memory in SQL database systems.

The research [7] and [8] study three designs for a persistent-
memory-native storage engine. One design is NVM-InP Engine,
where data are synchronously persisted on persistent memory
and old data are overwritten with the new data at the same
location, upon an update operation. Second design is NVM-
CoW Engine. This design also persists data on persistent
memory synchronously but uses the copy-on-write mechanism
in update. The third design is NVM-log Engine that employs
LSM-tree as the storage model. In this design, the SSTable is
placed on persistent memory and a transaction log record
contains only a pointer to a record on the SSTable on persistent
memory to avoid data duplication. These studies compare the
performance of the three storage engines, on an emulator, using
several benchmark workloads, but they lack to discuss how to
make them practical in industry. For example, they do not
discuss how to deal with the storage expansion as the data
volume grows and how to handle the case when the transaction
log files become full, but they need to continue transaction
processing. These two cases always happen in the real world,
especially in the internet industry, because it keeps recording
users’ transactions 24 hours/365 days online and the data
volume and the transaction log files increase monotonically.

In industry, Oracle Exadata X8M-2 uses persistent memory
to accelerate transaction log writing [6] [14]. It consists of
database servers that run a database service and storage servers
that provide the database service with storage. When a database
server commits a transaction, it writes transaction logs to
persistent memory on the storage servers with RDMA-writes.
Upon a successful completion of the RDMA-writes, the
transaction successfully completes. The logs on persistent
memory are then periodically flushed to a slower durable
storage, SSDs or HDDs. With this architecture, Oracle reports
that it has achieved up to 8x faster log writes than before [6].

Microsoft SQL Server 2019 is another example to adapt
persistent memory. It implements a feature called “Hybrid
Buffer Pool” [13] and expands the capacity of the regular
DRAM buffer. Data placed on persistent memory are memory-
mapped and directly read from there without them being copied
to the DRAM buffer. This architecture reduces the number of
memory copies in query processing, hence improving the
database performance. It also contributes to reducing the amount
of DRAM required for the regular buffer to meet a performance
goal.

To extend the results of these existing research and the use
of persistent memory further, at Yahoo Japan, we conduct
research to design a storage engine for SQL database systems
that natively uses persistent memory and that can be used to host
our internet services.

In the next section, we discuss the requirements we have set
in designing such a storage engine and what makes a storage
engine practical in industry.

Fig. 1 Traditional Architecture of SQL Database Systems

III. REQUIREMENTS FOR A PRACTICAL PERSISTENT-MEMORY-

NATIVE STORAGE ENGINE

Yahoo Japan is an internet service company in Japan with
more than 52 million login users monthly and delivers more than
100 internet services from e-commerce to online news service
to its users. Thousands of SQL database instances are running in
Yahoo Japan’s data centers for these internet services. To adapt
our SQL database systems to the new hardware, persistent
memory, and to improve the systems’ performance, we design a
practical persistent-memory-native storage engine in-house. In
designing such a storage engine, we consider how to meet the
current requirements for our SQL database systems to deliver
reliable internet services and database operations with our new
storage engine. Based on this consideration, we derive the
following five requirements for a practical persistent-memory-
native storage engine:

• Requirement #1: Scale with Data Volume

 The storage engine must scale with data volume. The
total volume of data has been growing each year at Yahoo
Japan, as it expands its business. In addition, our internet
services operate 24 hours/365 days online and keep
recording users’ transactions in our SQL database systems,
increasing the data volume. In order to satisfy this business
requirement, it must scale with the data volume growth.

• Requirement #2: Transaction

 Many of our internet services require transaction
support at the database layer, because they require consistent
views to users while running multiple queries to a database
simultaneously and committed transactions are never lost.
To fulfill this requirement with the new storage engine, it
needs to support transaction as well. It must be able to
respond to simultaneously running queries with consistent
views, persist committed transactions, and recover a
database to a consistent state after a failure.

• Requirement #3: Continuous Operation

 Our internet services operate 24 hours/365 days. To
support such non-stop internet services, database systems
must be able to perform necessary operations such as
transaction logging without stopping them. To fulfill this
requirement in the new storage engine, it must be capable
of performing operations such as transaction logging in
any case without stopping database instances.

• Requirement #4: Performance

 Database performance is critical in internet services, as
it directly impacts the application performance and the user
experience. For a better internet service experience, database
systems must be performant as much as possible. Since the
new storage engine is aimed to be persistent-memory native
and to improve the performance, it must be performant and
get benefits from the use of the new device.

• Requirement #5: MySQL Compatibility

 Yahoo Japan is one of the largest MySQL operators in
Japan. As a result, a large number of our internet services run
on it. To benefit these services with the new hardware

technology, persistent memory, and for their smooth
transition to the new storage engine, we require the new
storage engine to be MySQL compatible as much as
possible.

IV. DESIGN OF A PRACTICAL IN-HOUSE PERSISTENT-MEMORY-
NATIVE STORAGE ENGINE

In this section, we present our design of a practical
persistent-memory-native storage engine. The design is shown
in Fig. 2. To be persistent-memory native, we place both the
database files and the transaction log files on persistent memory
formatted in FS-DAX mode [16] and use the memory as their
durable storage. The storage engine accesses these as memory-
mapped files in byte granularity. To access these files as
memory-mapped files, we utilize the low-level library,
libpmem, in PMDK (Persistent Memory Development Kit)
[15] and flush CPU cache to ensure the durability of data as
needed. In this new storage engine, we also use DRAM. On
DRAM, we secure the area “Buffer/Work Area” that is used as
work area for sorting and distinction of data when processing
queries. On DRAM, we also secure the area to store status
information such as the number of active connections and the
number of transactions that have been executed, and the
information about locks that active transactions acquire and wait
for.

To scale with data volume, for meeting the requirement #1,
we design our storage engine to create a new memory-mapped
file on persistent memory of a specified size by a parameter in
the configuration file, when it tries to insert a new record, but no
more space is available for the new record in the existing
memory-mapped file. After it creates a new memory-mapped
file, it inserts the new record to the newly created file and links
it to the previous file as a list. In this manner, as more data is
stored with this storage engine, a linked list of database files is
created. When it is directed for a full table scan by the optimizer
and the executor, it traverses the link of the memory-mapped
database files until the end to scan the entire table.

To support transaction, the requirement #2, we employ well-
proven techniques. For atomic operation and recovery operation
to a consistent state, we implement transaction logging and
ARIES described in [12]. For committed transactions, we roll-
forward to reflect them to the database, and for uncommitted
transaction, we undo them from the database, to recover the
database to a consistent state. To provide a consistent view to
each of concurrently running queries, we employ the snapshot
isolation described in [18]. For atomic operation and recovery

Fig. 2 Design of the In-house Persistent-memory-native Storage Engine

operation, transaction logs are placed on persistent memory and
memory-mapped to the storage engine to make the engine
persistent-memory native.

Also, to support continuous operations of database systems,
the requirement #3, we place transaction log files on persistent
memory that have a generation. Transaction logs are always
appended to a transaction log file and monotonically increases
in size. So, if a transaction log file becomes full at some point,
the storage engine makes that transaction log file inactive and
switches an active transaction log file to a new one, a new
generation of a transaction log file, online, to continue
operations. This is the generation switch of a transaction log file
online. By switching an active transaction log file to the next
generation online, the storage engine keeps operating without
stopping transactions even in the case that a transaction log file
becomes full. If the last generation of a transaction log file is
used up, we then go back to the first generation and write a new
transaction log there.

In Fig. 2, one might notice that there are multiple transaction
log files in one generation. This is to write transaction logs in
parallel to improve the logging performance of the storage
engine and to address the requirement #4. We explain the details
on this point in Section V.

To satisfy the requirement #5, the compatibility with
MySQL, we design and implement our storage engine as a
MySQL’s storage engine. MySQL has a pluggable storage
engine architecture, that users can choose a storage engine, e.g.
InnoDB, MyISAM, CSV, etc, based on their needs. As we focus
on the storage engine, we do not modify the other components
of MySQL including the query parser, the optimizer, and the
execution engine, in our research. Operations such as insert,
update, delete, and select to an SQL table are implemented by
implementing the abstract class “handler” that specifies APIs of
table operations in MySQL. Transaction operations such as
commit, rollback, and recovery are implemented by
implementing the abstract class “handlerton” in MySQL.

V. PRE-FAULT FEATURE & PARALLEL-LOGGING FEATURE

In this separate section, we highlight the following two
features that are incorporated to our in-house storage engine to
benefit from the performance of persistent memory.

A. Pre-fault Feature

The first feature is the pre-fault feature. It is a feature to
eagerly cause page-fault against memory-mapped files on
persistent memory before the storage engine accesses them for
query processing. It is known that page-fault causes the

significant performance overhead when accessing memory-
mapped files on persistent memory [11]. To eliminate this
performance overhead in our in-house storage engine and to
benefit from the use of persistent memory in performance, we
design a feature to initiate page-fault in advance before the
storage engine accesses to a new region of a memory-mapped
file. For this purpose, we implement, in our storage engine,
dedicated threads, separate from the storage engine’s main
threads, and we call this feature as the pre-fault feature. These
dedicated threads start running before the storage engine starts
accepting table operations upon a start of MySQL server and
start scanning the database files and the transaction log files on
persistent memory that are memory-mapped to the storage
engine. When the storage expansion happens, they start
scanning the newly created file before the storage engine’s main
threads access it. With this design, we can eliminate the
occurrence of page-fault and the performance decrease of our
storage engine due to it. The effect of this feature is studied in
Section VI.

B. Parallel-logging Feature

In addition to the pre-fault feature, we also implement a
feature to write transaction logs in parallel in the storage engine
to improve the performance of our storage engine. In transaction
systems, it is widely known that the transaction logging is a
major source of performance bottleneck. This is, in one aspect,
because transaction logs must be totally ordered to secure the
consistency of databases, requiring the serialization of
concurrently running transactions. However, recently, database
researchers have proposed an algorithm to increase the
parallelism in transaction log writing, while securing the total
orders of transactions [17]. In our storage engine, we employ
this state-of-the-art parallel logging algorithm for writing
transaction logs. For this purpose, we form a generation of
transaction log files with multiple transaction log files. When
concurrently running transactions request to persist their
transaction logs simultaneously, we order each of these
transactions with a centralized counter and use a hash function
to distribute each transaction to write their transaction logs to
different transaction log files in parallel. In this manner, we can
increase the degree of parallelism and benefit from the higher
I/O bandwidth of persistent memory in transaction log writing.

VI. EVALUATION & DISCUSSION

In this section, we evaluate the performance of our in-house
persistent-memory-native storage engine, compared to the
performance of InnoDB running on persistent memory. InnoDB
is a widely used storage engine in MySQL and it supports

Fig. 3 Evaluation Workload

Table I. Evaluation Environment

CPU Intel Xeon Gold 6230R 2.1GHz x 2 (Total 104 Cores)

DRAM DDR4-192GB

Persistent
Memory

Intel® Optane™ DC Persistent Memory

SSDs SATA SSD 1.92TB (OS Boot, Load Data)

OS CentOS 7.8

DBMS MySQL 8.0.19 with the In-house Storage Engine

transactions. In addition, we discuss the effects of the two
features, (1) the pre-fault feature and (2) the parallel-logging
feature, in our storage engine and how they contribute to
improving the performance of our storage engine on persistent
memory.

Based on the design described in the previous two sections,
we have implemented our in-house storage engine for MySQL
8.0.19 and evaluated its performance on the hardware
environment described in Table I. In the evaluation, we
configure Intel® Optane™ DC Persistent Memory in AppDirect
mode with interleaving and format it in XFS FS-DAX mode, on
which we place the database files and the transaction log files.
And, to determine the effects of the pre-fault feature, we
implement two operation modes in our storage engine, one with
the feature and the other without the feature.

A. Evaluation Workload

In order to determine the effectiveness of the pre-fault
feature and the parallel-logging feature, we choose a write-only
workload, data loading, in our evaluation. It is because a good
workload to determine their effectiveness. In data loading, the
storage engine always accesses a new region of memory-
mapped database files to append new data, that always incurs
page-fault if no care is taken. By comparing the data loading
time of the storage engine with the pre-fault feature and without
the feature in data loading, we can evaluate the effectiveness of
the pre-fault feature. In addition, since in data loading a large
amount of transaction log records are generated and written to
the transaction log files, it is also a good workload to see the
effect of the parallel-logging feature.

The details of the evaluation workload are shown in Fig. 3.
Since we use a server with 104 cores in our evaluation, we run
the data loading at the 96 concurrency, the closest power of 2
that this server can run threads simultaneously, to utilize nearly

all the cores, splitting the original data into 96 separate csv files.
Each csv file contains one million records in it, and each thread
is assigned to a dedicated csv file to load the data. To avoid any
additional overheads in our evaluation, we do not define any
indexes or constraints to the target table. The target table has a
very simple structure with just 5 columns. We then compare the
loading performance of our in-house storage engine and InnoDB
on persistent memory in MySQL 8.0.19.

B. Effect of Pre-fault Feature

First, we discuss the effect of the pre-fault feature. Table II
shows the data loading time of our in-house storage engine with
the pre-fault feature and without the feature. It is shown with a
relative number, making the loading time of the storage engine
with the feature as 1. As we can see from Table II, the storage
engine with the pre-fault feature has a faster loading time and
improves the data loading performance more than 5x, compared
to the storage engine without it. Fig. 4 shows the CPU
utilizations and the output of perf during the data loading in both
cases. As we can see, if we don’t implement the feature, most of
the CPU time is spent by the kernel to handle page-fault, and
only a small portion of CPU time is consumed by the userspace,
causing a performance degradation of the storage engine during
the data loading. With pre-fault, it is not consumed by the kernel
to handle page-fault, but it is mostly consumed by the userspace
functions such as “row_to_heap” function of the storage engine.
From this result, we can see the effectiveness of the pre-fault
feature and its importance when designing a persistent-memory-
native storage engine for SQL database systems.

C. Effect of Parallel-logging Feature

Next, we discuss the effect of the parallel-logging feature.
This is the feature to write transaction logs in parallel to improve
the performance of the storage engine. For the evaluation of this
feature, we use the same data loading workload in Fig. 3 and
evaluate how the loading time changes with respect to the
number of parallel log write. In this evaluation, we use the
storage engine with both the pre-fault feature and the parallel-
logging feature.

The evaluation result is shown in Table III. In the table, it
compares the loading time with a different degree of parallel log

Fig. 4 CPU Utilizations and Perf Outputs of the In-house Storage Engine with and without Pre-fault Feature

Table II. Loading Time with and without Pre-fault Feature

write, making the loading time with a 4 parallel log write as 1.
As we can see, with the parallel-logging feature, it can improve
the loading performance more than 30%. However, increasing
the degree of parallelism too much also causes a performance
degradation. It may be that this is due to the contention on the
centralized counter to totally order transaction logs or due to I/O
bandwidth saturation of persistent memory, but we need to
further investigate the cause in our future research.

D. Performance Improvement by the In-house Storage Engine

Finally, we discuss the performance improvement achieved
by the in-house persistent-memory-native storage engine. It is
compared to InnoDB operating on persistent memory, where its
database files and transaction log files are placed on persistent
memory, in data loading. Our in-house storage engine runs with
the pre-fault feature and with the parallel-logging feature with a
4 parallel log write.

The result is shown in Table IV. The loading time is shown
with a relative number, making the loading time of our storage
engine as 1. As we can observe from this table, our in-house
storage engine exhibits more than 50x faster data loading time
than InnoDB on persistent memory, achieving a significant
performance improvement with our engine.

VII. CONCLUSION & FUTURE WORK

In this paper, we describe our in-house persistent-memory-
native storage engine that uses persistent memory as the durable
storage of a database and transaction log files. It is designed to
be practical in industry and performant on persistent memory.
Our evaluation shows that, in write workload, it is more than 50x
performant than InnoDB, on persistent memory. Also, the
evaluation shows the contributions of the pre-fault and the
parallel-logging features in the storage engine in improving its
performance.

At the end, we discuss our future work. In this research, we
implement a feature to expand database files on persistent
memory, as the data volume grows. Although our design works
well, as long as the data fits on persistent memory, we need to
go further to handle the case the data volume exceeds the
capacity of persistent memory. In this case, we employ another
technique, data-tiering, by combining persistent memory and
non-volatile block devices with a larger capacity, to handle more
data. Another feature that we plan to design is the high-
availability feature. With transaction logs, we can recover a
database to a consistent state after a failure. Additionally, to
ensure our internet services do not stop even in the case of a data
center failure, we implement the high-availability feature in our
storage engine.

REFERENCES

[1] A. Renen, L. Vogel, V. Leis, T. Neumann, A. Kemper, “Persistent
Memory I/O Primitives,” DaMON '19: Proceedings of the 15th
International Workshop on Data Management on New Hardware, 2019,
pp. 1-7.

[2] A. Rudoff, Persistent Memory Programming, ; login:; Vol 42. No. 2,
2017.

[3] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, P. Schwarz, “ARIES: a
transaction recovery method supporting fine-granularity locking and
partial rollbacks using write-ahead logging,” ACM Transactions on
Database Systems, Vol. 17, No. 1, 1992, pp. 94-162.

[4] H. Garcia-Molina, J. Ullman, J. WIDOM, Database System
Implementation, Prentice Hall, NJ, USA, 2000.

[5] Intel® Optane™ DC Persistent Memory DC Persistent Memory, Intel
Corporation.
https://www.intel.com/content/www/us/en/architecture-and-
technology/optane-dc-persistent-memory.html

[6] J. Shi, Exadata with Persistent Memory: An Epic Journey. SNIA
Persistent Memory Summit 2020.
https://www.snia.org/sites/default/files/PM-
Summit/2020/presentations/11_PMEM_Jia_Shi_final_PM_Summit_202
0_v2.pdf

[7] J. Arulraj, “The Design and Implementation of a Non-Volatile Memory
Database Management System,” Ph.D thesis, Carnegie Mellon
University, 2018.

[8] J. Arulraj, A. Pavlo, Non-Volatile Memory Database Management
Systems, Synthesis Lectures on Data Management, Morgan & Claypool
Publishers, 2019.

[9] J. Arulraj, A. Pavlo, S. Dulloor, “Let’s talk about storage & recovery
methods for non-volatile memory database systems,” SIGMOD '15:
Proceedings of the 2015 ACM SIGMOD International Conference on
Management of Data, 2015, pp. 707-722.

[10] J. Arulraj, M. Perron, A. Pavlo, “Write-behind logging,” Proceedings of
VLDB Endorsement, Vol. 10, No. 4, 2016, pp. 337-348.

[11] J. Choi, J. Kim, H. Han, “Efficient memory mapped file I/O for in-
memory file systems,” USENIX HotStorage '17, 2017.

[12] J. Gray, A. Reuter, Transaction Processing: Concepts and Techniques,
Morgan Kaufmann, CA, USA, 1992.

[13] Microsoft SQL Server 2019 Hybrid Buffer Pool, Microsoft Corporation.
https://docs.microsoft.com/en-us/sql/database-engine/configure-
windows/hybrid-buffer-pool?view=sql-server-
ver15&viewFallbackFrom=sqlallproducts-allversions

[14] Oracle Exadata Database Machine, Oracle Corporation.
https://www.oracle.com/engineered-systems/exadata/

[15] PMDK Persistent Memory Development Kit
https://pmem.io/pmdk/

[16] S. Scargall, Programming Persistent Memory: A Comprehensive Guide
for Developers, Apress Open, 2020.

[17] T. Tanabe, H. Kawashima, O. Tatebe, “Integration of parallel write
ahead logging and Cicada concurrency control method,” 2018 IEEE
International Conference on Smart Computing, 2018.

[18] Y. Wu, J. Arulraj, J.Lin, R. Xian, A. Pavlo, “An empirical evaluation of
in-memory multi-version concurrency control,” Proceedings of the
VLDB Endorsement, Vol. 10, No.7, 2017, pp. 781-792.

[19] Y. Wu, K. Park, R. Sen, B. Kroth, J. Do, “Lessons learned from the early
performance evaluation of Intel optane DC persistent memory in DBMS,”
DaMON '20: Proceedings of the 16th International Workshop on Data
Management on New Hardware, 2020, pp. 1-3.

TRADEMARKS AND REGISTERED TRADEMARKS

Oracle and MySQL are registered trademarks of Oracle and/or its affiliates.
Microsoft and SQL Server are either registered trademarks or trademarks

of Microsoft Corporation in the United States and/or other countries.
Intel® and Intel® Optane™ are trademarks of Intel Corporation or its

subsidiaries.

Table III. Loading Time with the Number of Parallel Log Write

Table IV. Loading Time of the In-house Storage Engine and InnoDB

