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Abstract—We illustrate the design of our in-house storage 

engine for SQL database systems. The storage engine is designed 

to be persistent-memory native, meaning that database and 

transaction log files are placed on persistent memory and accessed 

with byte granularity from the storage engine. In addition, it is 

aimed to be practical in industry and highly performant with the 

use of persistent memory. In this paper, we discuss five essential 

requirements for such a storage engine to be practical in industry 

and how they are met in our in-house storage engine. 

Furthermore, we highlight two important design features, namely, 

(1) the pre-fault feature and (2) the parallel-logging feature, that 

have been incorporated to our in-house storage engine, to improve 

its performance. By meeting the five essential requirements and 

incorporating the two design features to our in-house storage 

engine, we implement a persistent-memory-native storage engine 

for SQL database systems, in-house, that satisfies industry 

requirements and that is highly performant on write workload on 

persistent memory. 
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I. INTRODUCTION  

Recent introduction of byte-addressable persistent memory 
such as Intel® Optane™ DC Persistent Memory has elicited 
database researchers to revise the traditional architecture of SQL 
database systems to the one that is more suitable for persistent 
memory. As described in [12], the traditional architecture of 
SQL database systems assumes that the durable storage of a 
database is a non-volatile block device such as HDDs or SSDs 
and that there is a large performance gap in I/Os between such a 
non-volatile block device and the volatile DRAM. To hide this 
performance gap in I/Os between these two devices, traditional 
database systems employ techniques such as writing data to 
DRAM temporarily and persisting them to a non-volatile block 
device asynchronously at a checkpoint using write-ahead 
logging (WAL) algorithm.  

Since the introduction of byte-addressable persistent 
memory, database researchers have begun actively exploring the 
use of byte-addressable persistent memory as the durable 
storage of a database to improve the database performance and 
proposing new database architectures that are more suitable for 
persistent memory. For example, the studies [7] and [8] explore 
three designs for a persistent-memory-native storage engine of 
SQL database systems. In industry, Oracle Corporation’s SQL 
database hardware appliance, Oracle Exadata X8M-2, is now 

equipped with persistent memory to accelerate transaction log 
writing [6] [14]. Another example is Microsoft SQL Server 
2019. It implements a feature called “Hybrid Buffer Pool”, that 
directly reads data on persistent memory without loading it to 
DRAM buffer in read operations and that persistent memory 
serves as an extension of DRAM buffer [13]. 

With the use of persistent memory as the durable storage for 
database systems, the performance gap between the durable 
storage and DRAM becomes much smaller than ever, giving 
database systems an opportunity to improve their performance. 
However, the existing research in academia on persistent-
memory-native storage engines does not discuss nor present 
requirements in detail for such storage engines to be practical in 
industry, that is, for example, it does not consider how to deal 
with the storage expansion as the data volume grows. Even in 
industry, the use of persistent memory is now limited to a small 
part of database operations such as logging or data buffering. 
Instead, in our research, we envision to expand the use of 
persistent memory further and to design a persistent-memory-
native storage engine for SQL database systems that can satisfy 
industry requirements. In this paper, we discuss essential 
requirements for a practical persistent-memory-native storage 
engine from an industry point of view and illustrate the 
architecture of our in-house storage engine satisfying them. In 
addition, we present two important features in our in-house 
storage engine, (1) the pre-fault feature and (2) the parallel-
logging feature, to improve the storage engine performance on 
persistent memory. 

The contributions of this paper are: (1) stating requirements 
for a persistent-memory-native storage engine for SQL 
databases to be practical in industry, (2) an illustration of the in-
house persistent-memory-native storage engine, designed at 
Yahoo Japan, to meet the requirements, (3) highlighting two 
important features and their effects on persistent memory to 
improve the performance of the in-house storage engine. 

The rest of this paper is organized as follows. Section II is 
the preliminaries. Section III discusses the requirements for a 
practical persistent-memory-native storage engine from an 
industry point of view. Section IV and V discuss the design of 
our in-house storage engine to meet the requirements and the 
pre-fault feature and the parallel-logging feature. Section VI 
presents the evaluation results of our in-house storage engine, 
and Section VII concludes the paper by summarizing our work 
and the future work. 



II. PRELIMINARIES 

In this section, we briefly describe the traditional 
architecture of SQL database systems and existing research to 
adapt database systems to persistent memory. 

A. Traditional Architecture of SQL Database Systems 

The traditional architecture of SQL database systems, 
described in [4] and [12], is depicted in Fig. 1. Although we can 
describe the architecture in more detail, we only highlight the 
major components that are relevant to our discussion. A 
traditional SQL database system consists of the following major 
components below: 

• Query Parser: This component parses users’ queries and 
transform them into a form that can be passed to the next 
component in query processing, Query Optimizer, for 
optimizing the queries. 

• Query Optimizer: This is the component to optimize 
users’ queries. For example, based on the presence of an 
index, it determines to use an index for data retrieval, 
rather than fully scanning the entire data and filtering 
out unnecessary records to form the desired result set. 

• Execution Engine: This is the component to execute 
users’ queries, following the direction of the query 
optimizer. It requests the storage engine to perform I/Os 
to the durable storage. 

• Storage Engine: This component issues I/Os to the 
durable storage at a request of the execution engine. The 
component is also equipped with a transaction manager 
and a logging & recovery manager, to provide users 
with transaction support. In addition, it is equipped with 
a buffer manager that uses DRAM as the buffer to hide 
the I/O performance difference between the durable 
storage and DRAM.  

 The use of persistent memory as the durable storage for a 
database makes the I/O performance between the durable 
storage and DRAM closer than before, giving SQL database 
systems that adapt it a good opportunity to improve their 
performance. There is active research going on both in academia 
and industry to revise the traditional architecture of SQL 
database systems to a more optimal one for persistent memory. 
Since the storage engine is the component that can get direct 
benefits from it, the current research in the area mainly focuses 

on re-architecting the storage engine component to the one more 
suitable for persistent memory. In the next section, we highlight 
some of such research both in academia and industry. 

B. Existing Research to Adapt Persistent Memory 

In this section, we introduce some of existing research to 
adapt persistent memory in SQL database systems. 

The research [7] and [8] study three designs for a persistent-
memory-native storage engine. One design is NVM-InP Engine, 
where data are synchronously persisted on persistent memory 
and old data are overwritten with the new data at the same 
location, upon an update operation. Second design is NVM-
CoW Engine. This design also persists data on persistent 
memory synchronously but uses the copy-on-write mechanism 
in update. The third design is NVM-log Engine that employs 
LSM-tree as the storage model. In this design, the SSTable is 
placed on persistent memory and a transaction log record 
contains only a pointer to a record on the SSTable on persistent 
memory to avoid data duplication. These studies compare the 
performance of the three storage engines, on an emulator, using 
several benchmark workloads, but they lack to discuss how to 
make them practical in industry. For example, they do not 
discuss how to deal with the storage expansion as the data 
volume grows and how to handle the case when the transaction 
log files become full, but they need to continue transaction 
processing. These two cases always happen in the real world, 
especially in the internet industry, because it keeps recording 
users’ transactions 24 hours/365 days online and the data 
volume and the transaction log files increase monotonically.  

In industry, Oracle Exadata X8M-2 uses persistent memory 
to accelerate transaction log writing [6] [14]. It consists of 
database servers that run a database service and storage servers 
that provide the database service with storage. When a database 
server commits a transaction, it writes transaction logs to 
persistent memory on the storage servers with RDMA-writes. 
Upon a successful completion of the RDMA-writes, the 
transaction successfully completes. The logs on persistent 
memory are then periodically flushed to a slower durable 
storage, SSDs or HDDs. With this architecture, Oracle reports 
that it has achieved up to 8x faster log writes than before [6].  

Microsoft SQL Server 2019 is another example to adapt 
persistent memory. It implements a feature called “Hybrid 
Buffer Pool” [13] and expands the capacity of the regular 
DRAM buffer. Data placed on persistent memory are memory-
mapped and directly read from there without them being copied 
to the DRAM buffer. This architecture reduces the number of 
memory copies in query processing, hence improving the 
database performance. It also contributes to reducing the amount 
of DRAM required for the regular buffer to meet a performance 
goal. 

To extend the results of these existing research and the use 
of persistent memory further, at Yahoo Japan, we conduct 
research to design a storage engine for SQL database systems 
that natively uses persistent memory and that can be used to host 
our internet services.  

In the next section, we discuss the requirements we have set 
in designing such a storage engine and what makes a storage 
engine practical in industry. 

 

Fig. 1 Traditional Architecture of SQL Database Systems 



III. REQUIREMENTS FOR A PRACTICAL PERSISTENT-MEMORY-

NATIVE STORAGE ENGINE 

Yahoo Japan is an internet service company in Japan with 
more than 52 million login users monthly and delivers more than 
100 internet services from e-commerce to online news service 
to its users. Thousands of SQL database instances are running in 
Yahoo Japan’s data centers for these internet services. To adapt 
our SQL database systems to the new hardware, persistent 
memory, and to improve the systems’ performance, we design a 
practical persistent-memory-native storage engine in-house. In 
designing such a storage engine, we consider how to meet the 
current requirements for our SQL database systems to deliver 
reliable internet services and database operations with our new 
storage engine. Based on this consideration, we derive the 
following five requirements for a practical persistent-memory-
native storage engine: 

• Requirement #1: Scale with Data Volume 

 The storage engine must scale with data volume. The 
total volume of data has been growing each year at Yahoo 
Japan, as it expands its business. In addition, our internet 
services operate 24 hours/365 days online and keep 
recording users’ transactions in our SQL database systems, 
increasing the data volume. In order to satisfy this business 
requirement, it must scale with the data volume growth. 

• Requirement #2: Transaction 

 Many of our internet services require transaction 
support at the database layer, because they require consistent 
views to users while running multiple queries to a database 
simultaneously and committed transactions are never lost. 
To fulfill this requirement with the new storage engine, it 
needs to support transaction as well. It must be able to 
respond to simultaneously running queries with consistent 
views, persist committed transactions, and recover a 
database to a consistent state after a failure. 

• Requirement #3: Continuous Operation 

 Our internet services operate 24 hours/365 days. To 
support such non-stop internet services, database systems 
must be able to perform necessary operations such as 
transaction logging without stopping them. To fulfill this 
requirement in the new storage engine, it must be capable 
of performing operations such as transaction logging in 
any case without stopping database instances. 

• Requirement #4: Performance 

 Database performance is critical in internet services, as 
it directly impacts the application performance and the user 
experience. For a better internet service experience, database 
systems must be performant as much as possible. Since the 
new storage engine is aimed to be persistent-memory native 
and to improve the performance, it must be performant and 
get benefits from the use of the new device. 

• Requirement #5: MySQL Compatibility 

 Yahoo Japan is one of the largest MySQL operators in 
Japan. As a result, a large number of our internet services run 
on it. To benefit these services with the new hardware 

technology, persistent memory, and for their smooth 
transition to the new storage engine, we require the new 
storage engine to be MySQL compatible as much as 
possible. 

IV. DESIGN OF A PRACTICAL IN-HOUSE PERSISTENT-MEMORY-
NATIVE STORAGE ENGINE 

In this section, we present our design of a practical 
persistent-memory-native storage engine. The design is shown 
in Fig. 2. To be persistent-memory native, we place both the 
database files and the transaction log files on persistent memory 
formatted in FS-DAX mode [16] and use the memory as their 
durable storage. The storage engine accesses these as memory-
mapped files in byte granularity. To access these files as 
memory-mapped files, we utilize the low-level library, 
libpmem, in PMDK (Persistent Memory Development Kit) 
[15] and flush CPU cache to ensure the durability of data as 
needed. In this new storage engine, we also use DRAM. On 
DRAM, we secure the area “Buffer/Work Area” that is used as 
work area for sorting and distinction of data when processing 
queries. On DRAM, we also secure the area to store status 
information such as the number of active connections and the 
number of transactions that have been executed, and the 
information about locks that active transactions acquire and wait 
for. 

To scale with data volume, for meeting the requirement #1, 
we design our storage engine to create a new memory-mapped 
file on persistent memory of a specified size by a parameter in 
the configuration file, when it tries to insert a new record, but no 
more space is available for the new record in the existing 
memory-mapped file. After it creates a new memory-mapped 
file, it inserts the new record to the newly created file and links 
it to the previous file as a list. In this manner, as more data is 
stored with this storage engine, a linked list of database files is 
created. When it is directed for a full table scan by the optimizer 
and the executor, it traverses the link of the memory-mapped 
database files until the end to scan the entire table. 

To support transaction, the requirement #2, we employ well-
proven techniques. For atomic operation and recovery operation 
to a consistent state, we implement transaction logging and 
ARIES described in [12]. For committed transactions, we roll-
forward to reflect them to the database, and for uncommitted 
transaction, we undo them from the database, to recover the 
database to a consistent state. To provide a consistent view to 
each of concurrently running queries, we employ the snapshot 
isolation described in [18]. For atomic operation and recovery 
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operation, transaction logs are placed on persistent memory and 
memory-mapped to the storage engine to make the engine 
persistent-memory native. 

Also, to support continuous operations of database systems, 
the requirement #3, we place transaction log files on persistent 
memory that have a generation. Transaction logs are always 
appended to a transaction log file and monotonically increases 
in size. So, if a transaction log file becomes full at some point, 
the storage engine makes that transaction log file inactive and 
switches an active transaction log file to a new one, a new 
generation of a transaction log file, online, to continue 
operations. This is the generation switch of a transaction log file 
online. By switching an active transaction log file to the next 
generation online, the storage engine keeps operating without 
stopping transactions even in the case that a transaction log file 
becomes full. If the last generation of a transaction log file is 
used up, we then go back to the first generation and write a new 
transaction log there. 

In Fig. 2, one might notice that there are multiple transaction 
log files in one generation. This is to write transaction logs in 
parallel to improve the logging performance of the storage 
engine and to address the requirement #4. We explain the details 
on this point in Section V. 

To satisfy the requirement #5, the compatibility with 
MySQL, we design and implement our storage engine as a 
MySQL’s storage engine. MySQL has a pluggable storage 
engine architecture, that users can choose a storage engine, e.g. 
InnoDB, MyISAM, CSV, etc, based on their needs. As we focus 
on the storage engine, we do not modify the other components 
of MySQL including the query parser, the optimizer, and the 
execution engine, in our research. Operations such as insert, 
update, delete, and select to an SQL table are implemented by 
implementing the abstract class “handler” that specifies APIs of 
table operations in MySQL. Transaction operations such as 
commit, rollback, and recovery are implemented by 
implementing the abstract class “handlerton” in MySQL. 

V. PRE-FAULT FEATURE & PARALLEL-LOGGING FEATURE 

In this separate section, we highlight the following two 
features that are incorporated to our in-house storage engine to 
benefit from the performance of persistent memory. 

A. Pre-fault Feature 

The first feature is the pre-fault feature. It is a feature to 
eagerly cause page-fault against memory-mapped files on 
persistent memory before the storage engine accesses them for 
query processing. It is known that page-fault causes the 

significant performance overhead when accessing memory-
mapped files on persistent memory [11]. To eliminate this 
performance overhead in our in-house storage engine and to 
benefit from the use of persistent memory in performance, we 
design a feature to initiate page-fault in advance before the 
storage engine accesses to a new region of a memory-mapped 
file. For this purpose, we implement, in our storage engine, 
dedicated threads, separate from the storage engine’s main 
threads, and we call this feature as the pre-fault feature. These 
dedicated threads start running before the storage engine starts 
accepting table operations upon a start of MySQL server and 
start scanning the database files and the transaction log files on 
persistent memory that are memory-mapped to the storage 
engine. When the storage expansion happens, they start 
scanning the newly created file before the storage engine’s main 
threads access it. With this design, we can eliminate the 
occurrence of page-fault and the performance decrease of our 
storage engine due to it.  The effect of this feature is studied in 
Section VI. 

B. Parallel-logging Feature 

In addition to the pre-fault feature, we also implement a 
feature to write transaction logs in parallel in the storage engine 
to improve the performance of our storage engine. In transaction 
systems, it is widely known that the transaction logging is a 
major source of performance bottleneck. This is, in one aspect, 
because transaction logs must be totally ordered to secure the 
consistency of databases, requiring the serialization of 
concurrently running transactions. However, recently, database 
researchers have proposed an algorithm to increase the 
parallelism in transaction log writing, while securing the total 
orders of transactions [17]. In our storage engine, we employ 
this state-of-the-art parallel logging algorithm for writing 
transaction logs. For this purpose, we form a generation of 
transaction log files with multiple transaction log files. When 
concurrently running transactions request to persist their 
transaction logs simultaneously, we order each of these 
transactions with a centralized counter and use a hash function 
to distribute each transaction to write their transaction logs to 
different transaction log files in parallel. In this manner, we can 
increase the degree of parallelism and benefit from the higher 
I/O bandwidth of persistent memory in transaction log writing. 

VI. EVALUATION & DISCUSSION 

In this section, we evaluate the performance of our in-house 
persistent-memory-native storage engine, compared to the 
performance of InnoDB running on persistent memory. InnoDB 
is a widely used storage engine in MySQL and it supports 

 

Fig. 3 Evaluation Workload 

Table I. Evaluation Environment 

CPU Intel Xeon Gold 6230R 2.1GHz x 2 (Total 104 Cores) 

DRAM DDR4-192GB 

Persistent 
Memory 

Intel® Optane™  DC Persistent Memory 

SSDs SATA SSD 1.92TB (OS Boot, Load Data) 

OS CentOS 7.8 

DBMS MySQL 8.0.19 with the In-house Storage Engine 

 



transactions. In addition, we discuss the effects of the two 
features, (1) the pre-fault feature and (2) the parallel-logging 
feature, in our storage engine and how they contribute to 
improving the performance of our storage engine on persistent 
memory. 

Based on the design described in the previous two sections, 
we have implemented our in-house storage engine for MySQL 
8.0.19 and evaluated its performance on the hardware 
environment described in Table I. In the evaluation, we 
configure Intel® Optane™ DC Persistent Memory in AppDirect 
mode with interleaving and format it in XFS FS-DAX mode, on 
which we place the database files and the transaction log files. 
And, to determine the effects of the pre-fault feature, we 
implement two operation modes in our storage engine, one with 
the feature and the other without the feature. 

A. Evaluation Workload 

In order to determine the effectiveness of the pre-fault 
feature and the parallel-logging feature, we choose a write-only 
workload, data loading, in our evaluation. It is because a good 
workload to determine their effectiveness. In data loading, the 
storage engine always accesses a new region of memory-
mapped database files to append new data, that always incurs 
page-fault if no care is taken. By comparing the data loading 
time of the storage engine with the pre-fault feature and without 
the feature in data loading, we can evaluate the effectiveness of 
the pre-fault feature. In addition, since in data loading a large 
amount of transaction log records are generated and written to 
the transaction log files, it is also a good workload to see the 
effect of the parallel-logging feature. 

The details of the evaluation workload are shown in Fig. 3. 
Since we use a server with 104 cores in our evaluation, we run 
the data loading at the 96 concurrency, the closest power of 2 
that this server can run threads simultaneously, to utilize nearly 

all the cores, splitting the original data into 96 separate csv files. 
Each csv file contains one million records in it, and each thread 
is assigned to a dedicated csv file to load the data. To avoid any 
additional overheads in our evaluation, we do not define any 
indexes or constraints to the target table. The target table has a 
very simple structure with just 5 columns. We then compare the 
loading performance of our in-house storage engine and InnoDB 
on persistent memory in MySQL 8.0.19. 

B. Effect of Pre-fault Feature 

First, we discuss the effect of the pre-fault feature. Table II 
shows the data loading time of our in-house storage engine with 
the pre-fault feature and without the feature. It is shown with a 
relative number, making the loading time of the storage engine 
with the feature as 1. As we can see from Table II, the storage 
engine with the pre-fault feature has a faster loading time and 
improves the data loading performance more than 5x, compared 
to the storage engine without it. Fig. 4 shows the CPU 
utilizations and the output of perf during the data loading in both 
cases. As we can see, if we don’t implement the feature, most of 
the CPU time is spent by the kernel to handle page-fault, and 
only a small portion of CPU time is consumed by the userspace, 
causing a performance degradation of the storage engine during 
the data loading. With pre-fault, it is not consumed by the kernel 
to handle page-fault, but it is mostly consumed by the userspace 
functions such as “row_to_heap” function of the storage engine. 
From this result, we can see the effectiveness of the pre-fault 
feature and its importance when designing a persistent-memory-
native storage engine for SQL database systems. 

C. Effect of Parallel-logging Feature 

Next, we discuss the effect of the parallel-logging feature. 
This is the feature to write transaction logs in parallel to improve 
the performance of the storage engine. For the evaluation of this 
feature, we use the same data loading workload in Fig. 3 and 
evaluate how the loading time changes with respect to the 
number of parallel log write. In this evaluation, we use the 
storage engine with both the pre-fault feature and the parallel-
logging feature.  

The evaluation result is shown in Table III. In the table, it 
compares the loading time with a different degree of parallel log 

 

Fig. 4 CPU Utilizations and Perf Outputs of the In-house Storage Engine with and without Pre-fault Feature 

Table II. Loading Time with and without Pre-fault Feature 



write, making the loading time with a 4 parallel log write as 1. 
As we can see, with the parallel-logging feature, it can improve 
the loading performance more than 30%. However, increasing 
the degree of parallelism too much also causes a performance 
degradation. It may be that this is due to the contention on the 
centralized counter to totally order transaction logs or due to I/O 
bandwidth saturation of persistent memory, but we need to 
further investigate the cause in our future research. 

D. Performance Improvement by the In-house Storage Engine 

Finally, we discuss the performance improvement achieved 
by the in-house persistent-memory-native storage engine. It is 
compared to InnoDB operating on persistent memory, where its 
database files and transaction log files are placed on persistent 
memory, in data loading. Our in-house storage engine runs with 
the pre-fault feature and with the parallel-logging feature with a 
4 parallel log write.  

The result is shown in Table IV. The loading time is shown 
with a relative number, making the loading time of our storage 
engine as 1. As we can observe from this table, our in-house 
storage engine exhibits more than 50x faster data loading time 
than InnoDB on persistent memory, achieving a significant 
performance improvement with our engine. 

VII. CONCLUSION & FUTURE WORK 

In this paper, we describe our in-house persistent-memory-
native storage engine that uses persistent memory as the durable 
storage of a database and transaction log files. It is designed to 
be practical in industry and performant on persistent memory. 
Our evaluation shows that, in write workload, it is more than 50x 
performant than InnoDB, on persistent memory. Also, the 
evaluation shows the contributions of the pre-fault and the 
parallel-logging features in the storage engine in improving its 
performance. 

At the end, we discuss our future work. In this research, we 
implement a feature to expand database files on persistent 
memory, as the data volume grows. Although our design works 
well, as long as the data fits on persistent memory, we need to 
go further to handle the case the data volume exceeds the 
capacity of persistent memory. In this case, we employ another 
technique, data-tiering, by combining persistent memory and 
non-volatile block devices with a larger capacity, to handle more 
data. Another feature that we plan to design is the high-
availability feature. With transaction logs, we can recover a 
database to a consistent state after a failure. Additionally, to 
ensure our internet services do not stop even in the case of a data 
center failure, we implement the high-availability feature in our 
storage engine.  
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