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Abstract—Non-volatile memory (NVM) is an emerging mem-
ory technology that provides data persistence and higher densities
than conventional DRAM. The release of Intel Optane DC
memory makes NVM a practical and testable technology. Hash
maps are fundamental data structures that associatively map
keys to values, offering constant time lookup. In this work,
we designed a scalable, persistent hash map, PMap, optimized
around large graph processing workloads. PMap is a lock-free
non-volatile hash map with open addressing. Open addressing
offers low memory overhead and improved cache locality when
compared with node-based alternatives. Lock-freedom ensures
scalable performance, and its nonblocking nature enables log-
free persistence. Our hash map is supported by a non-blocking,
parallel resize, which allows operations to be performed by other
threads during a resize. In our performance tests, we found that
our design outperformed state-of-the-art alternatives, averaging
3122x faster under Optane DC.

Index Terms—hash map, hash table, key-value store, non-
volatile memory, lock-free

I. INTRODUCTION

Hash maps are often a core structure for graph repre-
sentation in memory. Our work is motivated by the need
for data structures suitable for large-scale graph analytics
operations [1]. Graph analytics are used for many tasks, in-
cluding page ranking, pattern matching, and clustering. These
workloads may involve billions of vertices or more, making
them difficult to manage in-memory [2]. DRAM capacities
are too small to store large graphs entirely in memory, so
flash memory is conventionally used as a supplement. Flash
memory is block-based, requiring custom algorithms to effi-
ciently support large-scale data processing. Further, DRAM
is volatile, meaning unexpected system failure can result in
data loss during time-consuming graph construction work or
graph updates. NVM offers byte-addressable storage with large

capacities and data persistence, making it a good fit for this
target use-case.

Existing NVM hash maps are traditionally lock-based.
These designs have limited scalability due to heavy lock con-
tention at scale. Non-blocking designs use atomic operations
to synchronize threads without locks, improving scalability.
Lock-freedom is a non-blocking progress guarantee that en-
sures that at least one thread always makes progress.

Lock-free algorithms are already difficult to reason about,
so it follows that adding NVM support to lock-free algorithms
is even more challenging. While atomic primitives maintain
thread operation order, they do not enforce memory order;
writes on a thread may only affect the volatile CPU cache
and later persist to NVM without regard to other threads,
resulting in an inconsistent recovery state. Enforcing memory
ordering is done by inserting fences between instructions to
prevent instruction reordering and by adding flush instructions
to explicitly evict cache lines to memory in the correct order.
Enforcing memory order while minimizing the number, and
thus impact, of flush and fence operations remains an open
problem.

While lock-free persistent hash maps have been developed,
most perform poorly due to a heavy use of pointer derefer-
ences. Open addressing enables the contiguous placement of
keys and values to improve cache locality and eliminate the
memory overheads of pointer storage. Developing a persistent
lock-free design with open addressing is rare, with only one
existing design identified, concurrent level hashing (clevel) [3].
While clevel uses open addressing, keys and values are still
stored via pointer, reducing the cache locality typically asso-
ciated with open addressing.

In this work, we propose PMap, a Persistent concurrent hash
Map with open addressing and non-blocking parallel resizing.
Our core design is based on Click’s hash map [4]. Click’s hash
map is lock-free and offers non-blocking parallel resizing. It
uses open addressing via linear probing, resulting in excellent978-1-6654-2375-5/21/$31.00 ©2021 IEEE



cache locality. To provide persistence, our design uses a
modified version of the link-and-persist approach [5], [6].
While this approach is traditionally used to persist pointers,
our modification enables link-and-persist to be used in-place,
persisting keys and values directly. This is crucial, as descrip-
tors, logs, or separate object allocations may require pointer
dereferences, which undermines the cache locality benefits of
pure open addressing. As our design uses open addressing,
table levels can be contiguously allocated for resize. This
simplifies persistence and recovery, as whole tables can be
mapped and verified to complete recovery with no need to
map smaller persistent objects. All these design choices result
in a hash map we believe to be well-suited to graph processing
while also offering excellent performance and functionality for
general use cases. In summary, PMap distinguishes itself from
prior work with the following contributions.
• A new persistent memory design and implementation: We

integrate persistence into the Click hash table to provide
a practical, scalable design.

• An efficient persistence design that can persist keys and
value in-place: We repurpose link-and-persist for use
on keys and values directly, rather than via copy-on-
write (CoW). This approach also eliminates the need for
descriptors, logs, or additional allocated objects.

• A new approach to resizing in persistent memory: Unlike
non-blocking NVM alternatives, our resize supports size
reductions as well as expansions.

• Performance testing and results: We run practical tests
against state-of-the-art alternatives and find our design to
be an average 3122x faster than the previous state-of-the-
art, clevel in our alternating test.

• Improvements over the state-of-the art: When compared
to the best and only known lock-free persistent hash
table with open addressing [3], our approach offers re-
duced pointer space, reduced dereference overhead, and
improved cache locality by inserting keys and values in-
place, support for capacity reductions by design, reduced
memory fragmentation, conditional value replacement,
and no CoW operations, resulting in a significant per-
formance advantage.

II. DESIGN

A. Design Requirements

Our hash map was designed to perform well in large-scale
graph analytics. Based on this primary use case, we established
the following design requirements.
• Optimized for read-heavy workloads: Analysis of graphs

is typically read-heavy. We use a persistence approach
that requires no flush or fence operations when reading
and offers fast table searches.

• Prioritize runtime performance over recovery perfor-
mance: Recovery is rare, so persisting less information
at the cost of a longer recovery is acceptable.

• Compact representation with few cache misses: Open
addressing enables the contiguous placement of keys
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Fig. 1: The data layout of the hash table. Underlined text
indicates class names, grey boxes contain data stored in per-
sistent memory, and arrows indicate pointers. CHM contains
auxiliary counters (copyIdx, copyDone, size, slots)
and a pointer to the new table (newTable). copyIdx
tracks the number work chunks claimed by resizers while
copyDone records the number of completed work chunks.
size tracks the number of active key-value pairs and slots
is the number of unclaimed locations to place elements.

and values to improve cache locality and eliminate the
memory overheads of pointer storage.

• Low memory management overhead: When possible, we
allocate large table chunks instead of small, per key-value
objects, to reduce the number of allocations.

The current state-of-the-art, clevel [3] generally meets these
goals well. Clevel uses a two hash solution to improve
performance at high load factors, reducing the need to resize
and thus allowing for a compact representation. It uses link-
and-persist [5], [6] to minimize the number of flush and fence
operations and provide recovery, open addressing to reduce the
need for pointers, and dynamic persistent memory allocation
to manage object pairs. However, the paper does not detail how
recovery works, the design still uses pointers when accessing
key-value objects (as they would otherwise be limited to the
size of an atomic), and the dynamic allocation of object pairs
increases the complexity and overhead of persistence. With the
limits of clevel in mind, we worked to develop an improved
hash table design.

B. Data Layout

As illustrated in Fig. 1, each ConcurrentHashMap (PMap)
consists of a table pointer, which points to the lowest
level table that contains valid elements. Within each table is
a pairs pointer, which points to a chunk of contiguously
allocated persistent memory to store keys (K) and values
(V). Each key and value in the illustration has a number to
indicate which key and value are associated with each other
in the structure. Each table level is named in the direct access
(DAX) filesystem in the order it was allocated (1.dat, 2.dat,
3.dat, etc.) to enable deterministic and correct recovery. CHM
contains auxiliary hash map data used to perform resizing and
to heuristically identify high load factors. The most crucial
element of CHM data is newTable, a pointer to the next



level of the hash table allocated. In this illustration, 1.dat
was originally the top level of the table, but its values were
migrated to 2.dat. Level 2.dat became the new lowest table
level, discarding 1.dat from the chain. Level 3.dat is currently
the top level table, and values in 2.dat are being incrementally
migrated to 3.dat. Each level of the table doubles in size in
this example, but table size can freely expand or compact to
any multiple of 2.

C. Lock-freedom and Resizing

Our design achieves lock-free resizing by adapting Click’s
hash table [4], which uses adjacent keys and values for cache
locality. Instead of grouping each key-value pair in a single
atomic, each key and each value is a separate atomic. This
allows for larger keys and values, since they can each be up
to 62-bits, but it increases design complexity, as consistency
must be maintained between the key and the value.

Our design supports all standard hash table operations as
well as a non-standard update() operation. An insert()
places a key-value pair into the hash map, provided that a value
has not already been associated with they key. A replace()
places a key-value pair into the hash map, overwriting any
existing value. A remove() replaces existing values with
tombstones to mark them as removed. If there is no key match
in the hash map, nothing is done. An update() is a non-
standard operation that conditionally updates a value based
on the current value. This is useful, for instance, when the
value in the table needs to function as a counter, such as
degree counting a graph. The update() operation enables
behaviors that, in a conventional non-blocking design without
transactions, would be impossible. While update() has been
implemented in previous works [7], our version has been
optimized to use a tighter CAS loop.

PMap resizing ensures efficient table memory consumption,
increasing or decreasing table size based on its load factor,
and clears out tombstone values, which can accumulate to
leave table slots unusable. At a broad level, PMap resizing
works much like Click’s hash table [4], by allocating a
table with twice the capacity, then migrating each key-value
pair from the old table to the new table. This approach to
resizing is concurrent, allowing helping; parallel, allowing
multiple threads to resize separate sections of the table; and
incremental, meaning partial resizing is seen as a consistent
and valid state. Unlike the state-of-the-art alternative clevel [3],
this design is flexible, supporting dedicated resizing threads
for efficiency or resizing directly on worker threads to ensure
lock-free correctness, as well as optional strong guarantees on
the number of levels maintained.

PMap migration works by placing a resize bit at each mem-
ory location as it transfers keys and values into slots at a higher
table level. This bit serves to prompt other threads to help with
migration. If a thread attempts to migrate a value, only to find
that a value already exists in the target slot, the value being
migrated is discarded, as this means the value being transferred
has already been replaced. Once migration is completed for
a slot, it is replaced with a migration sentinel. Once the

whole table level contains migration sentinels, migration is
complete. By permanently assigning keys their positions in
each table level, it becomes possible to know whether a target
key has been migrated from that level, if such a relocation
is in progress. Ultimately, the resizing scheme reads through
old levels of the table while enforcing writes to place values
only in the newest table. Unlike PMap, clevel cannot reduce
the size of the table because clevel inherits the design of lock-
based level hashing, which uses bottom-to-top migrations to
expand and top-to-bottom migrations to shrink. All threads
must search and migrate in the same direction to ensure
correctness, which is difficult in a non-blocking system. PMap
supports reduction by making all resize operations migrate
bottom-to-top.

III. PERSISTENCE

Our persistent design is an extension of the link-and-persist
approach used by related works [5], [6], requiring minimum
modifications to existing non-blocking data structures. So
long as all atomic operations work exclusively with pointers,
atomic operations can simply be replaced with link-and-persist
equivalents that add the necessary flush and fence operations,
leaving only recovery for developers to implement. We apply
this same approach but to the values themselves, reserving
a bit from the value for use with link-and-persist. Unlike
alternatives [8] that require every atomic read and write to
be instrumented with flush and fence operations, link-and-
persist only needs to flush and fence the first time an updated
variable is read or overwritten and in the worst case will persist
as a factor of thread count. This makes it desirable in read-
dominated workloads, which are common in graph analytics
problems.

Since 64 bits is the maximum supported size of a persistent
flush and our atomic operations, this is the upper limit on how
big our individual in-place keys and values can be made. To
track persistence, link-and-persist uses a spare bit available in
64-bit pointers to mark a dirty bit, but all 64 bits are used
in 64-bit non-pointer data types. Instead, we opt to support
keys and values as large as 62 bits, with one spare bit used
as the dirty bit and the other for resize migrations, discussed
in Section II-C. This allows the design to maintain high cache
locality and eliminate key and value dereferences while using
an efficient approach to limiting the number of flush and fence
operations. We believe that the key and value size limitation
is reasonable in our graph processing use case. For instance,
degree counting will typically not need more than 62 bits to
prevent integer overflow when counting edges. In cases where
more than 62 bits are needed, some cache locality can be
sacrificed and pointers to arbitrarily large objects can be stored
as keys or values instead.

A. Recovery

To reduce the number of persists, our design does not persist
auxiliary data that can be reconstructed from other persistent
data, such as the size of the table. The hash table only persists
the keys and values. The size and counters associated with



each table can be inferred using the file size and contents
while the hierarchy of levels is inferred by the filenames of
the tables saved to NVM.

Link-and-persist ensures consistency between threads and
NVM, and lock-freedom ensures all partial operations will not
block, but correct persistence further requires these incomplete
operations to be recoverable, else they become orphaned and
never complete. In our design, this can only occur if the key
has been inserted but the value has not. While this can be
safely ignored and later discarded via resizing, we opt to
explicitly mark the value as a tombstone to make it clear that
the operation did not place a value.

Each level of the table is allocated as a file in persistent
memory and mapped as a contiguous region of memory by
mmap. Level files are named sequentially via a shared atomic
counter to maintain table allocation order. By maintaining a
strict ordering, there is no need to persist pointers to levels.
Instead, table levels are opened in numeric order, with subse-
quent levels mapped to higher levels and linked on recovery
before resuming normal execution.

IV. CORRECTNESS

The following definitions are provided to reason about
durable linearizability for PMap. An execution of a concurrent
system is modeled by a history, a finite sequence of method
invocation and response events [9]. A response matches an
invocation if they are called by the same thread on the same
object. A method call in a history H is a pair consisting of an
invocation and next matching response in H , also referred to
as an operation. An invocation is pending in H if no matching
response follows the invocation. An extension of H is a
history constructed by appending responses to zero or more
pending invocations of H . The notation complete(H) denotes
the subsequence of H consisting of all matching invocations
and responses. A sequential history H is legal if each object
subhistory is legal for that object.

Definition 1. A history H is linearizable if it has an extension
H’ and there is a legal sequential history S such that 1)
complete(H) is equivalent to S, and 2) if m0 precedes method
call m1 in H , then the same is true in S [9].

Legal sequential history S in Definition 1 is referred to as
a linearization of H .

Definition 2. Given an execution E, an operation O is durable
at step t of the (extended) execution E if the following holds.
For any legal execution E′, which equals E in the first t steps,
if the execution of the recovery of O completes in E′, then
for any linearization of E′, O is linearized.

An operation is considered durable if there is sufficient
information in NVM such that the recovery procedure causes
this operation to be linearized.

Definition 3. Given an extended execution E, the durability
point of operation O is the first point t in the execution when
the operation O becomes durable.

Definition 4. Given an execution E, the durability points
of the operations in the execution E imply an order on the
operations, called durability order.

Definition 5. A linearizable object is durably linearizable if
for all executions E of the object, 1) the durability point of
each operation is between its invocation and response, and 2)
there exists a linearization of E whose order of operations is
the same as the durability order of operations in E [10].

A. Durable Linearizability

To prove that the PMap is durably linearizable, it must
be shown that for all multithreaded executions E, 1) the
durability point of each operation is between its invocation and
response, and 2) there exists a linearization of E whose order
of operations is the same as the durability order of operations
in E.

Theorem 1. The PMap is durably linearizable.

Proof. First it is shown that the durability point of each
operation is between its invocation and response. According to
the link-and-persist technique [5], [6] discussed in Section III,
all atomic words set the “dirty bit” prior to being written
by CAS. After the atomic word is written by CAS, the
operation persists the atomic word using a flush and fence,
then atomically removes the mark. The durability point for
insert occurs when the insert value is persisted after the
CAS successfully inserts the new value into a slot with a
tombstone. The durability point for remove occurs when the
tombstone is persisted after the CAS successfully replaces the
old value with a tombstone. The durability point for replace
and update occurs when the new value is persisted after the
CAS successfully updates the old value to the new value.

Next it is shown that there exists a linearization of E whose
order of operations is the same as the durability order of
operations in E. As previously mentioned, a successful CAS
always updates an atomic word at a memory location with
the dirty bit set. If any operation attempts to read or write an
atomic word before it is persisted, it will observe that the dirty
bit is set and help persist the atomic word prior to proceeding
with its own operation. Since the persist order is equivalent to
the CAS order for a particular memory location and updates
by CAS to different memory locations are commutative, there
exists a linearization of E whose order of operations is the
same as the durability order of operations in E.

If a crash occurs, the recovery procedure is invoked by the
main thread to restore the state of the PMap. It now must
be shown that the restored state reflects a linearization of
E whose order of operations is the same as the durability
order of the operations in E. Let op′ be an operation that
has persisted the key but not yet persisted the value. Let
op1, op2, ..., opn−1, opn, op

′ be the history of operations in-
volving an arbitrary memory location up to a crash event.
All operations from op1 to opn are guaranteed to be durable
linearizable because the link-and-persist technique requires
that an operation that accesses an atomic word with the dirty



bit set must help complete that operation before proceeding
with its own operation. When the recovery procedure is
invoked, any partial operations are identified and reverted.
Therefore, the history of operations to any arbitrary memory
location becomes op1, op2, ..., opn−1, opn. When considering
the composition of operations to all memory locations, the
operations can be rearranged to form a linearization of E
whose order of operations is the same as the durability order of
operations in E since operations to different memory locations
are commutative.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

Our experiments are configured to run on a Linux server
configured with 134GB of DRAM and 248GB of Intel Op-
tane DC provisioned in App Direct mode and mounted in
Filesystem-DAX (fsdax) mode. PMap interfaces with this
filesystem using mmap(), flushing with clflush and fenc-
ing with sfence. Two Intel Xeon Gold 6230 CPUs are set
up for NUMA. Each CPU has 20 cores and 40 threads for a
total of 80 threads. All code was written in C++ and built in
GCC using -O3, -march=native, and -flto flags.

We ran tests on the following data structures:
• PMap: PMap is our new design proposed in this paper. It

is based on the Click hash map [4], offering asynchronous
parallel resizing and lock-freedom, but with additional
persistence guarantees added. It uses open addressing
with linear probing to improve temporal locality and
reduce dereferencing.

• clevel: Concurrent level hashing is a lock-free implemen-
tation of conventional lock-based level hashing [3]. This
design provides asynchronous resizing, lock-freedom, and
open addressing in NVM, making it the most closely
related work and the current state-of-the-art.

• OneFile: OneFile provides a library for wait-free per-
sistent transactions [11]. We use the hash map included
in the OneFile code provided by the authors in our
evaluation. This design is node-based rather than using
open addressing.

• STL: The std::map is provided by C++ as a part of
the standard template library. This implementation uses a
global lock to provide thread safety. It is the only design
in our performance testing that does not provide persis-
tence in NVM, instead working as a DRAM baseline to
compare against the impact of NVM and the flush and
fence constraints used by the alternatives.

• PMDK: The concurrent hash map is provided by the
libpmem library as a convenient and readily available
NVM hash map [12]. It is based on the Intel TBB hash
map [13] but modified to support NVM. It uses buckets
restricted by reader-writer locks.

All tests use 62-bit words to prevent the need for pointer
dereferencing in our design. Our tested design does not
assign dedicated resizing threads, devoting all active threads
as worker threads. Threads perform whole-table resizes when

a resize is invoked, to limit the number of active tables. To
provide fair testing, our open addressing approaches, PMap
and clevel, both use an initial table size of 214. While fully mi-
grated tables can be safely deleted, our preliminary code offers
no garbage collection. Levels can be tracked and reclaimed
using traditional lock-free approaches, including reference
counting, hazard pointers, or epoch-based reclamation. These
systems do not need persistence in our design to function
properly, as we have implemented comprehensive garbage
collection for tables on recovery, inferred based on table
contents. Garbage collection was avoided to benchmark the
data structure itself, without the overheads of the memory
reclamation system.

We ran the following tests to evaluate performance:
• Alternating: This test pre-fills the table to 50% capacity,

then each thread alternates between inserting and remov-
ing key-value pairs. Each key is unique to the running
thread to reduce contention. After performing 400,000
operations in our tests, the overall run time is measured
at various thread counts. Results are illustrated in Fig. 2a.
In this test, we find that PMap averages 3122x faster than
the state-of-the-art, clevel.

• Random: This test pre-fills the table to 50% ca-
pacity, then performs all operations at random with
equal probability. Some operations are substituted when
not natively supported by the tested structure. For in-
stance, increment() is not supported by clevel, so
insert() is used instead. After performing 400,000
operations in our tests, the overall run time is measured
at various thread counts. Results are illustrated in Fig. 2b.
In this test, we find that PMap averages 334x faster than
the state-of-the-art, clevel.

• Degree testing: R-MAT [14] is a graph generating model.
It lists node connections as pairs. This test assigns up
to four threads separate RMAT files to parse into the
hash map. It works by counting the number of con-
nections leaving each node using an increment()-
based update() function. This is meant to simulate the
behavior of degree counting, a common graph processing
task. While PMap and STL easily support increment,
the alternatives use insert as a basic, albeit insufficient
substitute in these tests. Results are illustrated in Fig. 2c.
In this test, we find that PMap averages 6551x faster than
the state-of-the-art, clevel.

B. Discussion

In all testing conducted, PMap outperforms all NVM al-
ternatives. We credit these results to the simplified memory
allocation used, where whole tables are allocated rather than
nodes or keys and values. We also believe that placing keys
and values directly in the table, unlike the NVM alternatives,
provides PMap with a performance advantage via excellent
cache locality and a reduction in dereferences.

Clevel offers the previous state-of-the-art performance. Its
design is similar to ours, but it requires keys and values be
placed atomically via pointer, with the resulting dereferences
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Fig. 2: Performance tests: Comparisons of our design (PMap) against state-of-the-art alternatives. In each sub-figure, the X-axis
is the thread count, and the Y-axis is the time to complete the test in milliseconds.

reducing performance. Since keys and values are held via sep-
arate objects, additional overhead is introduced by performing
memory allocation in NVM.

The other designs have limitations as well. OneFile offers
relatively poor performance because its design is meant to
be general and wait-free, rather than efficient. Wait-freedom
and full transaction support are stronger progress and isolation
guarantees than are required to implement a practical NVM
hash map design. PMDK is designed using straightforward
locks, limiting its performance. STL performs well because
it uses DRAM instead of slower NVM memory and uses no
flush or fence operations. This improves performance at the
cost of persistence.

VI. RELATED WORK

Hash tables are fundamental and thus have a large existing
body of research work describing concurrent, resizable, and
non-volatile designs. Early concurrent hash maps either did not
provide resizing [15], [16] or provided slow resizing [17], [18].
Newer works include an HTM-based cuckoo hash table [19]
and a non-blocking phase-concurrent hash table [20].

Several hash tables designs have focused on fast resizing
using a variety of approaches. Novel techniques include a
linked-list-based hash table that can split and join buckets dy-
namically [21], wait-free resizing via extendable buckets [7],
[22], parallel resizing using a hash function that places keys
in the same region regardless of table size [23], and lock-free
resizing with open addressing [4], [24].

A. Non-volatile Hash Maps

PMDK is an NVM framework developed by Intel for use
with Optane DC [12]. It provides libraries for developing
NVM applications, including NVM data structures. For our
purposes, the PMDK concurrent hash map offers a baseline
implementation for comparison.

OneFile from Ramalhete et al. is the first NVM framework
to guarantee wait-free transactions in NVM [11]. It values
general applicability of correctness conditions for ease of use
over performance. Its full transactional guarantees are useful
but nonessential for our design.

Alternative persistent hash tables include Dalı́, a pe-
riodic persistence approach where updates are persisted
using a global fence [25], log-free hashing with resiz-
ing [26], [27], and general-purpose transformations such as
the Pronto library [28], phase change memory (PCM) [29],
Mnemosyne [30], and iDO [31]. More recent designs ex-
plicitly accommodate Optane DC’s limited bandwidth, in-
cluding Dash [32], which uses compressed fingerprints of
entries for read-reduced probing and Rewo-Hash [33], which
synchronizes a volatile copy of the persistent table in DRAM
for fast searches. Concurrent level hashing (clevel) was the
first concurrent lock-free hash table with open addressing
developed for use with non-volatile memory [3]. It builds on
level hashing [26], [27] for the hash table, link-and-persist [5],
[6] for persistence, and offers a novel lock-free design.

VII. CONCLUSIONS

NVM presents unique challenges for in-memory data struc-
tures. Our work developed and tested a non-volatile, scalable
hash map, applicable in large graph processing workloads
while performing well enough to be used in a wide variety of
tasks. PMap is currently the best performing hash map to offer
lock-freedom and open addressing in NVM. Our performance
testing finds this design offers significant performance gains
over the state of the art, averaging 3122x faster than the
previous state-of-the-art, clevel, while maintaining lock-free
progress and persistent recovery. The source code for this work
is available for evaluation at https://github.com/ucf-cs/PMap.

PMap, as written, is limited to keys and values as large
as 62 bits each. This is a limitation of the implementation
rather than the design. It can be extended to store arbitrarily
large elements by storing pointers instead of keys and values.
Concurrent level hashing uses this approach with optimizations
to reduce dereferences [3]. Properly implementing this requires
a mechanism to persist and recover external key and value
objects, which is beyond the scope of this paper. Additionally,
this extension would require pointer dereferences to access
keys and values, reducing cache locality and thus performance.

Using linear probing results in a more straightforward
design and improved cache locality when probing, but it



also results in a poor performance at high load factors. We
believe this is a worthwhile tradeoff between performance
and functionality, offered in exchange for space, but future
work should examine different designs to improve high load
factor performance. Cuckoo hashing or Hopscotch hashing
would greatly improve load factor performance. This requires
relocating keys, which violates the constraints required to
support our resizing scheme and results in enormous overhead
to accomplish via lock-free KCAS [34], [35]. Using multiple
hash functions to place keys may also be possible, but this
increases the complexity and overhead of resizing, as multiple
locations must be checked for each key to verify migration.
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