HBTree: an Efficient Index Structure Based on
Hybrid DRAM-NVM

Yuanhui Zhou
Wuhan National Laboratory for
Optoelectronics
Huazhong University of Science
and Technology
‘Wuhan, Hubei, China
zhouyuanhui @hust.edu.cn

Taotao Sheng
Optoelectronics

and Technology

Abstract—Non-volatile Memory (NVM) with extremely high
storage performance is the key storage device to build the next
generation of storage systems. Various key-value (KV) store index
structures have been designed for NVM, but these designs based
on single level NVM suffer from significant write consistency
overhead. The DRAM-NVM hybrid schemes improve the write
performance but at the cost of very long recovery time. In this
study, we proposed a novel DRAM-NVM hybrid index structure
named HBTree (Hybrid B+Tree), which not only achieves better
basic KV operating performance, but also greatly shorten the
reconstruction time. HBTree uses the hot and cold characteristics
of data access in actual application scenarios to cache the hot data
into DRAM, so that improving the efficiency of KV operation.
Meanwhile, it applies logging to ensure the data reliability of
the write operations on the cached data. To reduce the system’s
failure recovery time, HBTree periodically backs up the index
on DRAM to NVM. The experimental results indicate that for
basic KV operation, the HBTree is 1.2~1.7 times faster than
FAST&FAIR and 1.1~1.8 times faster than FPTree. Compared
to FPTree, the recovery time of the HBTree is reduced by 70%.

Index Terms—Non-Volatile Memory, Index structures, DRAM-
NVM hybrid storage, B+ Tree

I. INTRODUCTION

Non-volatile memory (NVM), such as PCM [1], STTRAM
[2], and RRAM [3], is a new type of storage device with
characteristics of low latency, non-volatility, low power con-
sumption, high storage capacity, and byte addressing. The
first 3D X-Point [4] persistent memory (PM) product, Optane
DC PMM, was released by Intel in April 2019 [5]. NVM
breaks up the performance and capacity gap between DRAM
and SSD/HDD, which can be connected to the CPU through
memory interface as a large capacity main memory, and it can
be directly used as a block device. Currently there are many
hybrid storage systems composed of NVM and DRAM.

Indexing is a fundamental technology for persistent KV
stores. The efficiency of KV operations, such as Put, Get
and Delete, largely depends on the operation efficiency of the
indexing structure, which makes it one of the research hotspots
in the storage field. Conventional indexing structures are not
suitable for NVM or DRAM-NVM hybrid memory systems
because they are specially designed for hard disks or SSDs.

*Corresponding author: jgwan@hust.edu.cn

Wuhan National Laboratory for
Huazhong University of Science

Wuhan, Hubei, China
shengtaotao @hust.edu.cn

Jiguang Wan*

Shenzhen Huazhong University of Science
and Technology Research Institute
Wuhan National Laboratory for Optoelectronics
Huazhong University of Science and Technology
Wuhan, Hubei, China
jgwan@hust.edu.cn

A large plethora of research focuses on optimizing indexing
structures for PM based on conventional indexes. The indexing
structures include LSM-Tree [6], Hash [7], B+tree [8], [9],
B+Tree and hash hybrid structure [10], etc. These studies
can be roughly divided into three categories. The first one
optimizes indexing structures to adapt to the characteristics of
NVM and improve system performance; the second reduces
the consistency overhead on NVM and speeds up failure
recovery; the third studies hybrid structure, and use DRAM
to optimize system performance.

B+Tree is one of the most popular data structures. Com-
pared with the Hash structure, B+Tree has better range query
performance and its access method based on random read and
write is more suitable for the characteristics of NVM [11].
Therefore, the B+ tree indexing structure is more suitable
for PM. However, our experimental results in §2.2 show that
FAST&FAIR [9], a representative solution to optimize the
B+tree index structure on a single-layer NVM, is limited by
the performance of the NVM and data consistency issues
[12], [13]. Also, there is an obvious gap compared with
the B+tree and log solution on DRAM. FPTree [8], another
representative B+ tree indexing structure based on the DRAM-
NVM hybrid structure, exploits the better performance of
DRAM to improve indexing efficiency, but it sufferd from a
long failure recovery time.

To improve the performance of the indexing structure and
shorten the reconstruction time, HBTree, an indexing structure
based on DRAM-NVM hybrid structure is proposed in this
paper. The design of HBTree is based on the hot and cold
characteristics of data access in actual application scenarios.
The NvmTree where the hot data is located is placed in the
DRAM and the consistency of the CacheTrees on DRAM is
guaranteed through the log method, thus improving the read
and write performance of the hot data. Besides, the index on
the DRAM is backed up to reduce the system’s failure recovery
time.

The HBTree, FAST&FAIR, and FPTree are implemented
and evaluated with the widely used Yahoo! Cloud Serving
Benchmark (YCSB) on the real PM device, Intel’s Optane
DC PMM. The test results demonstrate that HBTree delivers

978-1-6654-2375-5/21/$31.00 ©2021 IEEE

the best performance, and it outperforms FAST&FAIR by 1.7x
and FPTree by 1.8x at most on IOPS. Compared to FPTree,
the recovery time of the HBTree is reduced by 70%.

The rest of the paper is organized as follows: In Section 2,
the details of NVM and the challenges of the B+tree index for
PM are introduced. In Section 3, the HBTree is proposed. In
Section 4, the performance of HBTree is evaluated. Section 5
concludes this paper.

II. BACKGROUND AND MOTIVATION
A. Non-Volatile Memory

Compared to traditional disk and flash, emerging Non-
Volatile Memory (NVM), such as Optane DC PMM, is a
new type of storage device that can provide better persis-
tence, greater capacity, byte addressability, better persistence,
and read latency similar to DRAM. Of course, NVM has
weaknesses such as poor tolerance and asymmetric read and
write performance. Due to the characteristic of persistence, the
consistency of the persistent data in NVM has to be considered
to ensure the correctness of system failure recovery.

B. Operational Efficiency

FAST&FAIR and FPTree are two representative optimiza-
tion schemes for the B+tree indexing structure on NVM. The
operational efficiencies of these two solutions are evaluated
and compared with that of the B+tree on DRAM and that
of the B+tree with log on DRAM solution (DRAM-B+tree-
Log). Among them, the B+ tree on DRAM exploits the widely
used stx-btree [14]. The DRAM B+tree combined with the
log is denoted as DRAM-B+Tree-Log, and the log is used
to maintain data consistency. The size of the B+tree node
of all schemes is 512B, and the key and value size are both
8B. The operation efficiency of the basic operations of Load,
Put, Get, and Delete is considered. The four solutions are
evaluated as follows. First, 200 million key-value pairs are
loaded. Then, 10 million key-value pairs are randomly put.
Next, 1 million keys are randomly gotten, and finally, 1 million
keys are randomly deleted. These tests are conducted in the
same evaluation environments as described in §4.

[FAST&FAIR
FPTree

s DRAM-B+Tree-Log
DRAM-B+Tree
1400 A
1200
1000
800 -

600 -

throughput (x1030ps)

400 A

sl \

Workload

Fig. 1. Throughput of four indexing structures in Kops/s.

Figure 1 shows the throughput of the four indexing struc-
tures. Among them, FAST&FAIR performs the worst because
it is built on a full NVM device. In this case, all opera-
tions need to access NVM, and there is a large amount of

write consistency overhead; FPTree is built on a DRAM-
NVM hybrid structure. The inter-mediate nodes of FPTree
are placed in DRAM and the internal data of the leaf node
is not guaranteed to be in order. In this case, the cache
line refreshes, and the consistency overhead is reduced. Thus,
FPTree performs better than FAST&FAIR for random write,
but the disordered leaf nodes still affect its read performance.
The write operation of the DRAM-B+tree-Log solution only
needs to persist the Log record once, which further reduces the
consistency overhead. Thus, this solution achieves significantly
better write performance than FPTree. Meanwhile, the read
operations of the solution are completed on faster DRAM, so
its random read performance is 1.96x that of FPTree.

In summary, the performance of the FPTree based on a
DRAM-NVM hybrid structure index is better than that based
on NVM only but lower than the B+tree solution on DRAM.
Compared with the B+tree based on NVM, DRAM-B-+tree-
Log has an obvious weakness because all the log data needs
to be replayed during system restart. In this case, the solution
takes a long time and occupies too many DRAM resources
when the data is large.

C. Recovery Time

—am— FPTree L 2 DRAM-B+Tree-Log

N
a
o

__ 200 _.
g -
] —
E 150 o
>
2 ~
g 100 e
3
o
50 .
oA P bl —a
0 50 100 150 200 250

The Key-Value number (million)

Fig. 2. Recover time for FPTree and DRAM-B+Tree-Log

When the system fails, the availability of the system is seri-
ously affected by the recovery time of the indexing structure.
Since FAST&FAIR is built on the full NVM, the data can
be persisted. Thus, the recovery time of DRAM-B+tree-Log
and FPTree is evaluated. It can be seen from Figure 2 that
the recovery time is proportional to the data volume, and the
recovery time of DRAM-B+tree-Log is far longer than that
of FPTree. This is because FPTree only needs to rebuild the
intermediate nodes on the DRAM according to the persistent
leaf nodes in the NVM to restore the indexing structure. But
when the data volume is 200 million, the recovery time of
FPTree is close to 16 seconds, which still has a greater impact
on the system availability.

III. HBTREE DESIGN

HBTree is proposed in this paper to improve operational
efficiency and reduce the recovery time of existing PM in-
dexing structures. It is a new tree index based on a DRAM-
NVM hybrid structure, and it can improve read and write
performance by caching hot data in DRAM to reduce write
overhead. Besides, it writes logs on NVM to ensure data
consistency and periodically backs up the index structure to
NVM to speed up the system failure recovery.

A. General Architecture

HBTree is a hybrid three-layer persistent index. As shown
in Figure 3, the HBTree’s data structure includes the index
layer, middle layer, and data layer. The design of the HBTree
from the bottom layer to the top layer and the motivation
behind the design are introduced in the subsequent content.
Data layer. To achieve an efficient scan, B+Tree is exploited to

index layer B+Tree
middle layer @

LogTreel ! LogTree2 LogTree3
data layer : P : :
i CacheTree CacheTree DRAM
: ; NVM
NvmTree NvmTree NvmTree
: Log : Log

Fig. 3. Overview of the HBTree

manage data. However, due to the increasing height of B+Tree
caused by the increase of data volume, more NVM accesses
are required. To reduce NVM accesses and achieve efficient
index operations, the global B+Tree is broken into numerous
small B+ Trees called NvmTree with contiguous key ranges.
Also, the hot NvmTree is cached in DRAM as CacheTree, and
Log is used to ensure consistency. So, CacheTree, NvmTree
and Log consist of LogTree are designed for the data layer.
Middle layer. To efficiently manage the Log-Tree in the
data layer, the middle layer that is a double-linked list with
each key representing a LogTree is designed. The middle
layer also conducts statistics on the access frequency of each
LogTree and identifies the hot NvmTree cached in DRAM to
speed up the read and write operations. To reduce recovery
time, all nodes of middle layer will be stored in NVM
immediately. Index layer. It is a B+tree on DRAM to index
the metadata nodes in the middle layer. It can quickly find the
metadata of key ranges on the middle layer. The index can be
built fast by traversing the middle layer without considering
the consistency after the system is powered off or breakdown.
Overall, the HBTree can be regarded as a tree structure,
and the leaf nodes are the LogTrees with small heights and
contiguous key ranges. the HBTree has four characteristics.
First, the index layer is all located in DRAM without consid-
eration of consistency, which improves the efficiency of the
overall index structure. Second, the combination of CacheTree
on DRAM and Log on NVM reduces the data consistency
overhead of the overall structure. Third, for a large data vol-
ume, the LogTree is used as a unit to identify hot and cold data,
and only LogTrees with hot data have a CacheTree in DRAM ,
which effectively utilizes a small number of DRAM resources.
Lastly, by backing up the CacheTree periodically, the recovery
time in the case of system power failure is reduced. After the
CacheTree is reconstructed, the index layer and middle layer

with little data can be reconstructed fast, which contributes to
a short recovery time of the index structure.

B. Hotspot Statistica Algorithm

The middle layer stores the metadata information of the
LogTree, including the root node pointers of the CacheTree
and NvmTree, Log, and temperature records of the LogTree.
When the data in the LogTree changes, the cache node on
DRAM and the persistent node on NVM is updated immedi-
ately.

The hot LogTree can be identified based on the access
frequency of the LogTrees. So, the NvmTree of hot LogTree
can be cached in DRAM and synchronized periodically, which
reduces the access of NVM and improves performance. Of
course, it is necessary to ensure consistency at a slight cost of
writing logs.

Based on the historical access information of the LogTree,
a heat statistics algorithm is proposed in this paper to calcu-
late the temperature of the LogTree. If the historical access
frequency of a LogTree is high, the LogTree is likely to
be frequently accessed in the future period of time. The
temperature of LogTrees is calculated through Equation (1):

Tii4at) = Ax Ty + Operateay (D

Where T, is the temperature at time t; A is a cooling
coefficient in the range of (0, 1] with a default value of 0.5;
Operateat is the number of accesses to the LogTree during
the time interval At, and the initial temperature 7§ is set to 0.
When a LogTree is split, the temperatures of the new LogTree
are half of the original.

C. Data Layer

The data layer of the HBTree consists of LogTrees. The
LogTree provides data persistence, fast recovery, and high-
speed access, and it includes a CacheTree on DRAM and
an NVMTree on NVM, and Log. Initially, LogTree only
contains NvmTree, and all read and write operations access
NVM directly. When the NvmTree is frequently accessed,
the operation efficiency of CacheTree is low due to the
limitation of NVM performance. Therefore, CacheTree is built
on DRAM as the cache of NvmTree to improve the operation
efficiency of the index. Meanwhile, writing logs are exploited
to ensure consistency.

The write operations of CacheTree need to write logs
to ensure data consistency. When the log of a LogTree is
generated, the log space is allocated, and it is reclaimed later
by a large log pool. Because the key and value are separated,
only the operation type, key, and value pointer are recorded in
logs. In this way, the size of log records is small and the write
overhead is reduced. When a log is written, the log record is
added first, and the current allocation address is then modified.
Finally, the log record and the cache line of the modified
address are flushed by the clflush command to ensure data
persistence.

As for the data that is accessed highly frequently, there is a
CacheTree inside the LogTree. The write request first appends

the log, and the data is then written to the CacheTree. This
avoids writing lower NVM directly and improves write perfor-
mance. The read operations can directly query the CacheTree
in DRAM. Besides, to reduce the recovery time needed by a
large log record, the CacheTree will synchronously update the
dirty node back to the NvmTree and then recycle the logs.
If the LogTree does not have a CacheTree, the frequency of
data access is small, and the delay of both operations directly
accessing the NvmTree on the NVM is acceptable. The NVM
guarantees the consistency of written data and does not write
logs.

D. Dynamic Extension

To identify hot and cold data based on the granularity of
LogTree, the proposed HBTree makes all LogTrees have a
small height (H), thus avoiding large data in a LogTree. When
the height of a LogTree (maximum height of a CacheTree
or NvmTree) is about to exceed H, the Log-Tree will be
dynamically expanded and split into two new Log-Trees,
which have the same height as the original Log-Tree and
no overlapping keyword ranges. If a CacheTree exists in

5.update
index layer

4.add into
metadata list

middle node
: Index layer, .-~

Index layer

I

\ NvmTree's root node

height H

+ NvmTree's

" LogTree A
/ rootnode

” ".Il.solit node

v
newnode 1[34Jaa] []
newnode2[es [[[]

Ie)
NvmTree's root node

Fig. 4. NvmTree Split

the LogTree, the data in the CacheTree must be flushed to
NvmTree before the LogTree is split, and then the CacheTree
and NvmTree start to split. As an example, each step of
splitting the NvmTree is illustrated in Figure 4. It is supposed
that there is only NvmTree in LogTree A and the height of
LogTree A exceeds H. First, the root node of the NvmTree
is evenly split to generate two new nodes. The pointer of the
key is 56 in the original root node, and it is used as the left
pointer of the new node 2. Meanwhile, the key word 56 is
added to the parent node in the index layer as a split key.
Then, LogTree B is generated with the new node 2 as the root
node of the NvmTree, and the metadata of LogTree B is added
to the metadata node list in the middle layer. Subsequently,
the NvmTree root node of LogTree A is replaced with the
new node 1 to form LogTree A, and the original root node is
recycled. Finally, the index data of its parent node is modified.

E. CacheTree Management

Considering that the DRAM capacity is limited, only Ca-
cheTree is built for the hot LogTree and the CacheTree of
the cold LogTree is deleted to save the total DRAM space
occupied by the CacheTree. Based on this, higher performance
can be achieved with less DRAM capacity.

CacheTree create. Because the structure of CacheTree is
consistent with NvmTree, NvmTree can be copied from NVM
directly, and the pointers connected between the nodes are then
modified. The CacheTree is built in the background. In this
case, the read operation will be blocked temporarily, and the
write operation is finished directly by recording in a log only.
When it is completed, the log will be played back.

CacheTree Synchronization. To quickly rebuild the Ca-
cheTree after the system is powered off, it is necessary to back
up the CacheTree to NvmTree to avoid the big differences
between the two structures. To speed up synchronization, the
data marked as dirty nodes is synchronized each time. A new
log will be created before the CacheTree is synchronized, and
the old log is deleted when the synchronization is completed.

CacheTree Recycle. When the middle layer finds a cold
LogTree, it needs to recycle the CacheTree. First, the read
operation is paused, and the dirty nodes are updated to
NvmTree. Then, all the nodes of the CacheTree are released,
and the log record is played back to NvmTree. Finally, the
NvmTree can work and the log will be deleted.

F. Data Consistency

Crash consistency is fundamental to persistent index struc-
ture. Since NVM has long write latency, the write operation
on NVM with data size over 8B needs to consider consistency.
First, CacheTree is exploited to reduce the write operation of
NvmTree on NVM. Meanwhile, copy-on-write is adopted to
ensure the consistency of all write operations of NvmTree.
Besides, copy-on-write instead of overwrite operation is also
adopted by CacheTree during synchronization, and atomic
modification of pointers can ensure the consistency of the leaf
node synchronization. In addition, if a crash occurs during
dynamic expansion, the middle layer can be restored by
traversing the NvmTree to determine whether there is data
overlap.

Moreover, the log is exploited to ensure consistency, and
the log is created by append write. After each log record is
written, the log will be persisted, and the current point of the
log will be updated. The pointer is atomic, and the log record
is valid only after the pointer is persisted. So, the scope of the
log can be determined by the starting address of the log and
current address after the system is powered off.

G. Recovery

In this section, the recovery of the HBTree after the system
failure is described. First, the middle layer is quickly restored
by traversing the persistent metadata node linked list in NVM.
If an unfinished split is found, the NvmTree continues to split,
and the double-linked list of the middle layer is restored. Then,
LogTrees are restored. The CacheTree is built by NvmTree,
and the logs are then scanned to execute the valid logs in order.
Finally, the index is restored. The index layer is small and
can be recreated directly through the middle layer. It should
be noted that after the failure recovery of the middle layer,
there is no key overlap between the LogTrees. Therefore, the

recovery of LogTrees can be performed in a multi-thread to
reduce the recovery time.

IV. EVALUATION

In this section, the performance of the HBTree is evaluated.
The experimental setup is first described, and the basic per-
formance, the performance under hot data, and the recovery
time of the HBTree are then evaluated.

A. Experimental Setup

All the experiments are performed on a Linux server (Kernel
version 5.10.1) equipped with two 24-core Intel Xeon Gold
5218R CPUs (2.30 GHz) and memory with a capacity of
64GB. The persistent memory used in the experiment is two
Optane DC PMMs, each with a memory capacity of 128 GB.
The maximum bandwidth of the PM for a single thread with
4KB I/Os is 2515 MB/s for sequential write, 2353 MB/s for
random write, 2922 MB/s for random read, and 3144 MB/s
for sequential read.

The implementation of the HBTree uses the libpmem li-
brary from PMDK [15]. The YCSB benchmark is adopted to
evaluate the performance of the indexes, and Put, Get, Update,
Delete, and Scan operations are conducted on this benchmark.
The number of randomly generated scans is less than 100, and
most of the Workloads use the default configuration. Among
them, Load C uses the Latest to generate the set of hot data.
All workloads employ 8-byte and 8-byte key-value pairs to
fully reflect the performance of the indexes.

B. Operation Efficiency

The HBTree is compared with two representative PM-based
index structures, i.e., FAST&FAIR and FPTree. The compari-
son is performed on uniformly distributed KV data. The YCSB
benchmark first populates the index with 200 million keys
(called Load) and then runs the respective workloads A, B,
C, D, E, and F with 10 million put and/or read requests.
The workload E performs scan operation, and the randomly
generated scan count is less than 100. The node size of the B+
tree of all schemes is 512B. Besides, the cache capacity of the
HBTree is set to S00MB. As shown in Figure 5, the HBTree

[FAST&FAIR

N

Workload

3 FPTree EEm HBTree

o]
o
o

(2]
o
(=]

N
o
o

throughput (x 1030ps)
N
o
o

(=]

Fig. 5. Throughput on the YCSB workloads

performs significantly better than FPTree and FAST&FAIR on
various YCSB workloads. The performance of the HBTree on
the Load workload is equivalent to that of FPTree and is much

higher than that of FAST&FAIR. The result of the workload
A and F shows that the HBTree the HBTree performance
improvement is relatively small for intensive write operations.
This is because before the HBTree writes to CacheTree, it
also needs to write logs to ensure data reliability and adds a
persistence operation. Besides, no data movement is required
by FAST&FAIR and FPTree to perform update operations, and
only a small number of persistence operations are required.
In this case, less performance improvement is achieved by
the HBTree. The results of the workload B, C, and D show
that the HBTree is more suitable for read-intensive workloads
because when there is hot data, most of the read operations
are performed on the faster DRAM through the CacheTree
cache. The result of the workload E shows that the HBTree
has certain advantages in range query, because the internal
data of the HBTree leaf nodes are ordered, and part of the hot
leaf nodes are cached.

C. Performance with Hotness Data

The performance of the HBTree in hotspot data accesses is
further evaluated on the YCSB load A, load B, and load C
workloads. The hotspot proportion of data is expressed as the
ratio of the number of visits to the total number and visits to
the hot data, and it is set to 50% to 80% in this experiment. The
hot data in the dataset accounts for 20% of the total data. The
YCSB benchmark first populates the index with 200 million
keys (called Load), and then runs the workloads A, B, and C
with 10 million put and/or read requests.

[FAST&FAIR FPTree EEE HBTree
1000 Workload A 1000 Workload B 1000 Workload C
_ 800 800 800
2
5
§ 600 600 600
5
£ 400 400 400
g
£l
200 200 200
0 0 0

50% 60% 70% 80% 50% 60% 70% 80% 50% 60% 70% 80%
The proportion of hot data

Fig. 6. Throughput under different data hotspots

Figure 6 shows that on workload A, the performance
improvement of the HBTree increases with the proportion of
the hots data. When the proportion of hot data is 80%, the
performance of the HBTree is about 1.35 times that of the
FAST&FAIR and 1.27 times that of the FPTree. Besides, the
HBTree archives better performance on workloads B and C.

In general, the higher proportion of hot data, the better
performance of the HBTree, and the greater performance
improvement for more intensive read operations. The HBTree
can achieve better read performance when the proportion of
hotspot data is 80%. At this time, most read requests are
completed by the CacheTree on DRAM, which reduces the
number of read operations that are performed on relatively
slow NVM devices and makes full use of DRAM’s feature of
fast 1/0.

D. Recovery Time

To explore the rapid recovery capability of HBTree, this sec-
tion tests the failure recovery time of HBTree under different
data set sizes and different cache capacities and compares it
with FPTree. To be fair, HBTree uses single-threaded recovery
like FPTree. The cache size of HBTree is set to SOOMB.

2 —&— FPTree —e— HBTree
OFT
Q
£
=
210
[}
>
Q
o
¢ 5
0 25 50 75 100 125 150 175 200

The Key-Value number (million)

Fig. 7. Recovery time for HBTree and FPTree in various data volumes

Figure 7 shows that the recovery time of the HBTree is
closer to that of the FPTree. With the increasing number of
key-value pairs, the recovery time of the HBTree is maintained
at a relatively stable level, while that of the FPTree is still
increasing. The recovery operation of the FPTree is imple-
mented according to the paper, and the time cost is mainly
in the reconstruction of the middle nodes. The cost of the
HBTree restoration is mainly concentrated on the restoration
of the LogTrees. For the key-value pairs with data volume of
200M, the recovery time of the HBTree is only 30% that of
the FPTree.

5- —e— HBTree-1 —&— HBTree-2 —¥— HBTree-4 —+— HBTree-8

Recovery Time(s)
N w £

-

o

25 50 75 100 125 150 175 200
The Key-Value number (million)

o

Fig. 8. Recovery time for different threads of HBTree

It is mentioned in Section III that the HBTree can be
recovered with multiple threads. Figure 8 shows the recovery
time of the HBTree under a different number of threads. As
the number of threads increases, the recovery time continues
to decrease. Meanwhile, the recovery time increases with the
data volume. When the data volume exceeds 80 M, it tends
to be flat because the recovery of CacheTrees in DRAM is
completed quickly, but the recovery time of the B+ tree in the
index layer is still long as the data volume increases.

V. CONCLUSION

In this work, a new tree index with a DRAM-NVM hybrid
structure is designed. The index structure can make full use

of limited DRAM resources to improve system performance
and exploit the characteristics of NVM to ensure efficient
data persistence and rapid recovery. The HBTree structure
is implemented with the PMDK development tool library on
the latest NVM equipment. On the general workload of the
YCSB benchmark, the performance of the HBTree is 1.2~1.7
times that of FAST&FAIR and 1.1~1.8 times that of FPTree.
Meanwhile, in the case of a large data volume, the recovery
time of the HBTree is reduced by 70% compared with FPTree,
and it achieves higher availability.

ACKNOWLEDGMENT

This work was sponsored in part by the National Key
Research and Development Program of China (No.2018-
YFB1003305), the fund from the Science, Technology and
Innovation Commission of Shenzhen Municipality (No.JCYJ-
20190809095001781), and the National Natural Science Foun-
dation of China (No. 62072196).

REFERENCES

[1] M. K. Qureshi, V. Srinivasan, and J. A. Rivers. Scalable high perfor-
mance main memory system using phase-change memory technology.
In Proceedings of the 36th Annual International Symposium 14 on
Computer Architecture (ISCA 09), pages 24-33, 2009.

[2] D. Apalkov, A. Khvalkovskiy, S. Watts, V. Nikitin, X. Tang, D. Lottis, et
al. Spin-transfer torque magnetic random access memory (STT-MRAM).
ACM Journal on Emerging Technologies in Computing Systems (JETC),
2013, 9(2): 1-35

[3] F. Zahoor, TZ. Azni Zulkifli, FA. Khanday. Resistive random access
memory (RRAM): an overview of materials, switching mechanism, per-
formance, multilevel cell (MLC) storage, modeling, and applications[J].
Nanoscale research letters, 2020, 15: 1-26.

[4] F. T. Hady, A. Foong, B. Veal, D. Williams. Platform storage perfor-
mance with 3D XPoint technology. Proceedings of the IEEE, 2017,
105(9): 1822-1833.

[5] Intel Optane DC persistent memory, 2019. https://newsroom.intel.com-
/news-releases/intel-data-centric-launch/.

[6] S. Kannan, N. Bhat, A. Gavrilovska, A. Arpaci-Dusseau, R. Arpaci-
Dusseau. Redesigning LSMs for nonvolatile memory with NoveLSM.
USENIX Annual Technical Conference. 2018: 993-1005.

[7]1 P. Zuo, Y. Hua. A write-friendly and cache-optimized hashing scheme
for non-volatile memory systems. IEEE Transactions on Parallel and
Distributed Systems, 2017, 29(5): 985-998

[8] I. Oukid, J. Lasperas, A. Nica, et al. FPTree: A hybrid SCM-DRAM per-
sistent and concurrent B-tree for storage class memory, In Proceedings of
the 2016 International Conference on Management of Data (SIGMOD),
2016, 371-386.

[91 D. Hwang, W. H. Kim, Y. Won, B. Nam. Endurable transient in-

consistency in byte-addressable persistent b+-tree. In 16th USENIX

Conference on File and Storage Technologies (FAST 18), Oakland, CA,

USA, 12-15 Feb. 2018, USENIX, 2018: 187-200

F. Xia, D. Jiang, J. Xiong, N. Sun. Hikv: A Hybrid Index Key-Value

Store for DRAM-NVM Memory Systems. In 2017 USENIX Annual

Technical Conference (ATC 17), Clara, CA, USA, 12-14 Jul, 2017,

USENIX, 2017: 349-362.

S. Chen and Q. Jin, “Persistent b+-trees in non-volatile main memory,”

Proceedings of the VLDB Endowment, vol. 8, pp. 786-797, Feb. 2015.

H. Volos, A. J. Tack, and M. M. Swift, Mnemosyne: Lightweight

Persistent Memory. In Proceedings of 16th International Conference

on Architectural Support for Programming Languages and Operating

Systems (ASPLOS’11), Newport Beach, CA, March 2011.

S. Haria, M. D. Hill, M. M. Swift. MOD: Minimally Ordered Durable

Datastructures for Persistent Memory. In Proceedings of the 25th ACM

Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS’20), Lausanne, Switzerland, March 2020.

Timo Bingmann. STX B+ tree C++ template classes. 2008.

Persistent Memory Development Kit, 2019. https://github.com/pmem-

/pmdk.

[10]

[11]

[12]

[13]

[14]
[15]

