
Scheduling-Aware Prefetching: Enabling the PCIe SSD to

Extend the Global Memory of GPU Device

Tse-Yuan Wang∗†, Chun-Feng Wu∗†, Che-Wei Tsao∗†, Yuan-Hao Chang† and Tei-Wei Kuo∗‡§

∗Department of Computer Science and Information Engineering, National Taiwan University, Taiwan
†Institute of Information Science, Academia Sinica, Taiwan

‡College of Engineering, City University of Hong Kong, Hong Kong
§NTU High Performance and Scientific Computing Center, National Taiwan University, Taiwan

E-mail: {tseyuan20, cfwu, johnson}@iis.sinica.edu.tw, bearman.sky@gmail.com, ktw@csie.ntu.edu.tw

Abstract—The evolution of Cyber-Physical Systems (CPSs) and In-

ternet of Things (IoTs) enables mobile and smart embedded devices
to be equipped with embedded GPUs for accelerating data-intensive

applications. To cut down device prices and reduce energy consumption,

current GPUs adopt the unified memory architecture to extend memory
size with using the PCIe SSD which is cheaper than directly enlarging

the off-chip DRAM on the GPU. However, adopting the unified memory

architecture, data shall be moved to the host DRAM before being moved

to the off-chip DRAM and thus it leads to serious contention issues
among CPUs and GPUs on the host DRAM. Although the advent of

new communication technology provides the opportunity for GPUs to

directly access the PCIe SSD without passing the host DRAM, it leads to
high data movement costs because the latency gap between the off-chip

DRAM and the PCIe SSD is large. To enhance the performance of the

low-cost energy-efficient GPU memory systems, this work advocates a

hardware-controller-based memory extension solution to not only avoid
the contention issues on the host DRAM but also reduce the data

movement costs. Particularly, we propose a scheduling-aware prefetching

design to perform data prefetching by utilizing the information from the
hardware warp scheduler. The proposed solution was evaluated by a

series of intensive experiments and the results are encouraging.

I. INTRODUCTION

The evolution of Cyber-Physical Systems (CPSs) and Internet
of Things (IoTs) enables mobile and smart embedded devices to
be equipped with embedded GPUs for accelerating data-intensive
applications, such as computer graphic, neural networks (NNs) [1],
and machine learning applications [2]. Aiming at accelerating these
applications, some devices are equipped with embedded Graphics
Processing Units (GPUs) [3], [4], [5]. In order to cut down the price
and reduce the energy consumption, embedded GPUs are usually
equipped with smaller off-chip dynamic random-access memory
(DRAM). In contrast to previous GPU memory size which is limited
by the size of off-chip DRAM, current GPUs provide the unified
memory architecture to unify memory space provided by the off-
chip DRAM and the host DRAM. That is, GPUs are able to access
the data resided in the host DRAM so as to extend the memory
space. Moreover, with the help of memory swapping, GPUs can also
access the data stored in swap devices after the data is swapped
back the host DRAM. To be noted, current mobile devices are
usually equipped with Peripheral Component Interconnect Express
(PCIe) Solid-State Drives (SSDs) which can be configured as a
swap device. Under the unified memory architecture, host DRAM
shared between GPU and Central Processing Units (CPUs) suffers
from serious memory contention issues especially when the mobile
devices and smart embedded devices are equipped with limited
host DRAM. Fortunately, due to the evolution of the wire-based
communications protocol, it provides the opportunity to enable GPUs
to access swap devices without moving the data to the host DRAM
in advance. However, directly accessing the data on the swap device
leads to serious performance degradation because the performance
gap between the off-chip GPU memory and the swap device is large.

Moreover, in contrast to CPU tasks, GPU tasks show weaker temporal

locality and thus the management of host DRAM meets the challenge

of fast locality saturation. That is, the effectiveness on capturing
process locality saturates quickly if the host DRAM is managed
by merely using page replacement approaches. Such a contradiction
motivates us to look for solutions to enable an efficient low-cost
energy-efficient GPU memory extension systems.

To mine the information behind large amounts of data retrieved
from sensors and social media, data-intensive applications are widely
used in this few years. To efficiently run the data-intensive applica-
tions, large amounts of data shall be placed in the memory devices,
such as DRAM, before being accessed by CPUs or GPUs. However,
extending DRAM size not only increases the prices but leads to
serious energy consumption. Aiming at providing low-cost memory
space, persistent memory researches can be classified into two classes,
that is the unified memory and memory extension solutions. Non-
Volatile Random Access Memory (NVRAM), e.g., Phase Change
Memory (PCM) and STT-RAM, is regarded as a possible unified
memory solution for taking the place of DRAM. However, until now,
NVRAM is still in the testing or even the development phases due
to the manufacturing issues in terms of cost and maturity [6], [7],
[8]. On the other hand, the memory extension solutions aiming at
incorporating different memory devices are production-ready. Based
on different managements on performing data movements between
different memory devices, the memory extension solutions can be
classified into software-controller-based [9] and hardware-controller-
based memory extension solutions [10]. To be specific, for software-
controller-based and hardware-controller-based memory extension
solutions, data movements are performed by the operating system
(OS) and the micro-controller (or hardware circuit) respectively. Vir-
tual memory management is a well-known software-controller-based
memory extension solution and it works by performing data swapping
between the host DRAM and swap devices with the help of operating
systems. However, all data shall be moved to the host DRAM before
being accessed and thus the memory contention issues become more
serious when both CPUs and GPUs share the host DRAM. On the
other hand, hardware-controller-based memory extension solutions
introduce a micro-controller which helps to move the data between
different memory devices without passing the host DRAM. Aiming
at avoiding the contentions on host DRAM, this work focuses on
proposing a hardware-controller-based memory extension solution.

The main challenge of the hardware-controller-based memory
extension solution is that the data movement costs between different
memory devices are expensive especially when the performance gap
between the memory devices is large. To alleviate the data movement
costs by reducing the frequency of the data movements, some of the
micro-controller designs monitor and keep the data which has higher
reuse probability in the faster memory with taking advantage of the
process access behaviors. Due to the fact that CPU tasks usually
show strong temporal access locality and thus recently accessed data978-1-6654-2375-5/21/$31.00 c©2021 IEEE

has higher probability to be accessed in the near future. Several
well-known replacement designs (such as ARC [11], CAR [12], and
CLOCK-Pro [13]) focus on identifying and avoiding evicting the
recently accessed data in the faster memory with lower manage-
ment overhead. To further eliminate the data movement costs, data
prefetching is a more aggressive approach to predict which data will
be accessed recently and fetch the predicted data from slower devices
to faster devices. To accurately predict the data, some researchers rely
on the process access behavior. For example, researchers show that
CPU tasks show strong spatial and temporal locality on the virtual
addressing space [10] and thus propose the page-on-page prefetching
strategy to fetch the data pages with virtual addressed nearby the one
which incurs a page fault. However, due to different design rational
behind CPU and GPU tasks, GPU tasks are usually designed for
processing large amount of independent data so as to fully utilize the
high parallelism exposed by GPUs. Therefore, GPU tasks usually
show low temporal locality and previous approaches designed for
capturing temporal locality become in-effective on dealing with GPU
tasks.

Aiming for accelerating data-intensive applications, mobile and
smart embedded devices are usually equipped with embedded GPUs.
To cut down device prices and reduce energy consumption, current
GPUs adopt the unified memory architecture to extend memory size
with using the PCIe SSD which is cheaper than directly enlarging the
off-chip DRAM on the GPU. However, based on the unified memory
architecture, host DRAM is shared between CPUs and GPUs, and
thus it leads to serious contention issues on the host DRAM. Although
GPUs can directly access the PCIe SSD without passing the host
DRAM, it leads to high data movement costs because the latency
gap between the off-chip DRAM in the GPU and the PCIe SSD is
large. In contrast to previous works, we propose a Scheduling-Aware
Prefetching (SAP) design to enhance the performance of the low-cost
energy-efficient GPU memory systems by (1) advocating a hardware-
controller-based memory extension solution to extend GPU memory
with PCIe SSD and thus avoid the memory contention issues on
host DRAM, and (2) utilizing the information of internal hardware
warp scheduler inside GPU device to perform data prefetching. A
series of experiments are conducted to evaluate the performance of
the proposed SAP design, and the results show that the proposed SAP
design could reduce up to 99% of effective access time compared with
the investigated well-known page replacement algorithms.

The rest of this paper is organized as follows. Section II presents
the background, observation and motivation of this work. In Sec-
tion III, a Scheduling-Aware Prefetching design is proposed to
enhance the access performance of memory system. The experimental
results are then reported and discussed in Section IV. Section V
concludes this work.

II. BACKGROUND, OBSERVATION AND MOTIVATION

A. Background: Low-Cost Energy-Efficient GPU Memory Extension

GPUs are widely used to accelerate data-intensive applications,
such as computer graphic and deep learning, and thus it usually has
large memory demands for holding the data. To meet the memory
demands, GPUs are usually equipped with an off-chip DRAM also
called the global memory. In addition to the off-chip memory, in re-
cent years, NVIDIA proposed the Unified Memory Architecture [14]
to allow GPUs to access the memory on the host systems, so
that the total accessible memory space can be further extended.
However, DRAM suffers from several shortcomings especially when
its size is increased, such as the expensive unit costs and high
standby power [15], and these shortcomings seriously increase the
costs of GPU, in terms of both prices and energy consumption.
Fortunately, in recent years, the manufacturing technology of NAND-
flash chips becomes sophisticated and thus several low-price and high

bandwidth NAND-flash based devices hit the markets, such as SSD
and NVDIMM [10]. The difference of prices between DRAM and
NAND-flash memory is shown in Table I. On the other hand, the
communication interface (e.g., PCIe) has rapidly developed to provide
higher bandwidth for holding the huge data movements between
devices and the host system. Under this trend, several researches
advocate to extend the main memory on the host system by using
the NAND-flash based storage devices, such as PCIe SSD, so as to
provide larger memory space with and cheaper unit costs and nearly-
zero standby power [16], [17].

Fig. 1. Data Movement among Host’s RAM, GPU Device’s RAM and PCIe
SSD

Aiming at expanding the GPU memory space with cheaper prices,
a swap-like protocol is adopted to enable storage devices (e.g., PCIe
SSD) as a part of GPU memory. To hide this complex memory
hierarchy from GPU programmers, host memory is used to buffer
the data between GPU and host system so that GPU programmers
only need to interact with host memory. For example, a cudaMemcpy

Application Programming Interface (API) in the Compute Unified
Device Architecture (CUDA) library is provided by NVIDIA for
programmers to decide the data movements between the GPU off-
chip memory and the host memory. On the host system, when the host
memory suffers high memory pressure, the operating systems help
to perform the data movements by swapping the data between host
memory and swap devices. The design rationale behind the swap-like
protocol, as shown in Figure 1, is to migrate the to-be-accessed data
from the host memory to the off-chip GPU memory once the data is
requested, and the data shall be first moved to the host memory if it
is resided on the external devices as illustrated in step (1) to (4) in
Figure 1. Specifically, when the memory space inside the GPU device
is not sufficient, some selected data decided by the programmer code
will be evicted to the host system, and the host system will allocate a
memory space for this data, as shown in step (1). If there is no enough
memory space on the host system, some cold data will be replaced
and swapped to storage devices by the operating system, as shown in
step (2). On the other hand, if the data required by the GPU is resided
in the storage device, this data will be first moved to the host memory,
and then moved from the host memory to the GPU device, as shown
in steps (3) and (4). Although this protocol provides the opportunity
for expanding the GPU memory with the storage devices, it leads
to the intensive host-memory contention issue between CPU and
GPU. Fortunately, NVLink [18], a new communication technology,
can be adopted to enable GPU to access the data on the storage
device directly without buffering data in the host memory in advance,
as show in steps (1,2), so that the memory contention issue can
be eliminated. NVLink adopts the technology of Remote Directly
Memory Access (RDMA) to enable data transmissions between two
PCIe devices, that is GPUs and PCIe SSDs in our case, without using
host memory. However, frequent data movements between GPU and
storage devices seriously degrade system performance because the

2

(a) AES (b) BFS (c) CP

(d) LPS (e) MUM (f) NN

Fig. 2. DRAM Hit Ratio under Different Page Replacement Approaches

access latency of the flash-based storage devices are several orders
slower than the off-chip GPU DRAM, as shown in Table I.

TABLE I
THE CHARACTERISTICS OF DRAM AND FLASH MEMORY.

Type DRAM Flash SLC [19] Flash MLC×2 [20]

Price (USD/GB, 2017) 6.79 3.05 0.52

Serial Access 1ns 10ns 20ns
Random Read 60ns 50µs 75µs
Write/Program 60ns 550µs 1300µs
Erase NA 1.5ms 3.8ms

B. Observation: Fast Locality Saturation

To improve system performance by reducing the amounts of data
movements, page replacement approaches are used to hold the most
frequently accessed data in the memory with taking advantage of
process locality. According to several previous works [11], [12], [13],
most of the page replacement approaches monitor and capture the
access localities of memory pages by utilizing the recorded access in-
formation, such as access recency and frequency. However, in contrast
to a CPU, which is a general-purpose processor with few complex
computing cores and designed for running few serial tasks, a GPU is
a special-purpose processor with huge amounts of simple computing
cores and is designed for running plenty of data-parallelism tasks.
That is, in each execution batch, most GPU cores run the same
instruction on processing different data. Specifically, GPU adopts
the single-instruction multiple-thread (SIMT) architecture and that
is several threads running the same codes are binded into a batch or
warp [21], [22].

In most cases, the relation between two warps is independent
and thus tasks run in GPU usually show weak temporal locality. In
this case, for GPU-based systems, page replacement approaches are
effective only on capturing the spatial locality exposed from the data
and it is hard to capture the temporal behaviors of GPU tasks. Based
on our observations, applying page replacement approaches on GPU
tasks usually suffers from the issue of fast locality saturation. That is,
the effectiveness on capturing process locality saturates quickly and

thus, even when larger DRAM is equipped in the GPU, the DRAM
hit ratio cannot be further improved.

To validate the observed fast locality saturation of GPU tasks,
we analyze six task behaviors collected from the modified GPGPU-
Sim [23] simulator. All tasks are selected from the representative
benchmarks in ISPASS [23]. In the experiments, we simulated two
memory layers, L2 cache and main memory (DRAM or global
memory), and the configurations are set depending on NVIDIA
GTX480. That is, the size of the L2 cache is set to 768 KB. We
evaluate two representative page replacement approaches, such as
the first-in-first-out (FIFO) and the least-recently-used (LRU), on
improving the DRAM hit ratio under different setting of DRAM size,
that is from 1MB to 1.5GB. Figure 2 shows the evaluation results,
where the x-axis shows the DRAM size and the y-axis indicates the
DRAM hit ratio. The fast locality saturation phenomenon is clearly
shown in all benchmarks and that is the DRAM hit ratio approaches
to saturation with setting the DRAM to merely 8 MB.

C. Motivation

According to our observations, adopting unified memory architec-
ture to extend GPU memory space with using PCIe SSD may incur
serious contentions on host DRAM especially when the embedded
systems are equipped with limited host DRAM. Although GPUs
can directly access PCIe SSD without moving the data to host
DRAM beforehand, it leads to serious performance degradation due
to the large performance gap between the PCIe SSD and the off-chip
DRAM in the GPUs. In contrast to previous works, this work focuses
on the solution that can not only avoid the contention issues on the
host DRAM but also improve system performance by prefetching
the data with considering process information provided by the GPU
warp scheduler. The technical challenges fall on (1) how to design a
hardware controller to avoid the memory contention issue and (2) how
to exploit the process information in the warp scheduler to perform
data prefetching.

III. SCHEDULING-AWARE PREFETCHING

A. Design Overview

In the typical modern system architecture, the GPU device is re-
garded as a co-processor in the host to accelerate specific applications

3

such as graphic processing, deep learning, etc. The host usually has
a storage device (block device) as the swap device, which is used
to extend the main memory space to provide the extra memory
space when the DRAM space of the host is not sufficient. This
extended memory space can also provide to the GPU device, which
can indirectly use this extended memory space by the host when the
GPU device’s main memory space is also not sufficient. Fortunately,
by RDMA technology, we can use a PCIe SSD as the minor main
memory for the GPU device to extend the main memory space.
The complex data movement operation among the RAM of the host,
the RAM of the GPU device, and the PCIe SSD can be efficiently
avoided. Without significantly modifying the software stack of CUDA
programming, and completely utilizing the information of the internal
hardware warp scheduler, we design a new hardware component
“Memory Manager” to collect the warp information, and the detail of
this component is described in Section III-B. The complete system
architecture is shown in Figure 3.

Fig. 3. System Architecture

B. Internal GPU device information – Warp Scheduling

The typical GPU program can be divided into two parts, CPU
execution part and GPU execution part. In the former, it usually
contains data allocation, GPU device initialization, etc. In the latter,
it is usually called “kernel,” and which is usually the sub-programs
or functions of the GPU program. For reducing the complexity of
writing the GPU program, many runtime libraries (such as CUDA and
OpenCL runtime library) are proposed to provide the basic functions,
and the GPU device driver also provides the interface for utilizing
the hardware resource. The kernel will be divided into many threads
by the previous two layers, and threads will be grouped into warps
according to the hardware configuration of the GPU device. The
threads in the same warp usually perform the instruction with the
same type (operation, memory access, etc.), and it will be performed
together. GPU is the data parallelism model, and data might be
assigned into any one of GPU cores. The hardware warp schedulers
decide the execution order of instruction. Profiling the kernel might
obtain the memory access information, but the internal hardware warp
scheduler in the GPU device might reschedule the warps, and the
memory access patterns might be changed and can not be predicted.
Therefore, using the information of internal hardware warp schedulers
can more accurately predict the access behavior for the future.

For reducing the complexity of writing the GPU program and uti-
lizing the information of the hardware warp schedulers, we proposed
a new component “Memory Manager” inside the GPU device to
fully utilize the information of hardware schedulers to dynamically
data movement without changing the writing way of GPU program.
The instructions of warp have many types. We only consider the
instructions about memory access operations, such as memory load
and store instructions, because the data should be loaded/stored
from/to main memory before/after the data are operated. Therefore,

Fig. 4. Scheduler-Aware Prefetching

the memory manager will periodically watch the warp schedulers
to obtain the instructions about memory access. If the accessed
data location is not L1 or L2 cache, the accessed memory range
will be recorded in the memory manager, and the adjacent memory
range will be grouped together. Because the access latency of flash
memory is very long, the data movement between the GPU device’s
main memory and the PCIe SSD only occurs when the required
accessed data is missing in the GPU device’s main memory. PCIe
SSD usually has high access bandwidth, so migrating more data at
once is suitable and reasonable. The data in the main memory level
of the GPU device usually have a strong spatial access locality, so
using the large size for the management unit of the main memory
in the GPU device is also suitable. In there, the management unit
is set to 4KB. When data cache miss in the DRAM of GPU
device happens, the memory manager will use the collected warp
information about memory access instruction to prefetch data from
PCIe SSD to DRAM. If the data of the recorded memory range are
already in DRAM, then the corresponding management unit of this
memory range will not be prefetched to DRAM. This prefetching
operation is based on the information of hardware warp scheduler, so
we called it “Scheduler-Aware Prefetching (SAP),” and the procedure
of SAP can be illustrated by Figure 4. In there, the red box is to
illustrate the first prefetching. Before the first data cache miss occurs,
the information of warp scheduler is recorded, and the memory
addresses of recorded memory access instructions are 2147545984,
2147560448, 2147560576, and 2147560704, respectively. In there,
the latter 3 items will be grouped together because they are in the
same management unit, and the first item will be recorded to other
alone items. When the first data cache miss happens, the data of
these two management units will be prefetched to the DRAM of
the GPU device from PCIe SSD, and this can better utilize the
access bandwidth of storage. Therefore, when the following memory
access instructions (the accessed memory accesses are 2147560448,
2147560576, and 2147560704) is coming, data are already in the
DRAM of the GPU device, and data cache miss can be efficiently
avoided. In past research works, CPU usually has the speculative
execution technology which is usually efficient and has good perfor-
mance, but GPU does not adopt this technology and it could not be
efficiently executed in GPU, because GPU adopts the data parallelism
optimization model. Therefore, we designed the SAP scheme to fully
and efficiently utilize the information of the hardware warp scheduler.
SAP does not need to spend unnecessary maintenance operations to
monitor the access behavior of the management unit compared to
the traditional page replacement algorithms for managing CPU-based
memory.

IV. PERFORMANCE EVALUATION

A. Experimental Setup

We modify GPGPU-Sim [23] to collect the warp information and
the memory access trace. A trace-driven simulation is created to
simulate the Unified Memory (contained different memory materials)
for GPU device with PCIe SSD. The hardware configuration of GPU
device uses NVIDIA GTX480 configure, and DRAM size is set from

4

(a) AES (b) BFS (c) CP

(d) LPS (e) MUM (f) NN

Fig. 5. Effective Access Time by Different Cache Algorithms

1MB to 1.5GB. The characteristics of simulated unified memory are
shown in Table II. The access latency of flash memory is very long,
so we use the effective access time to evaluate the performance of
different cache policies. In there, we use FIFO and LRU algorithms as
the comparisons to evaluate our design (SAP), and the management
unit size of all policies is 4KB. For evaluating the performance of
different policies on various application cases, we use the benchmarks
published in ISPASS-2009 paper [23] to evaluate the performance of
the proposed design.

TABLE II
THE SPECIFICATION OF EVALUATED UNIFIED MEMORY.

Type Access Latency

DRAM Access Latency (Read) 60ns
DRAM Access Latency (Write) 60ns
Flash Memory Random Access Latency (Read) 50,000ns
Flash Memory Random Access Latency (Write) 550,000ns
Flash Memory Serial Access Time (ns/Bytes) 5ns

B. Experimental Results

1) Effective Access Time: In computer architecture, effective ac-
cess time is a famous and common metric to evaluate memory system
performance. The access latency of flash memory is very long, so the
great cache policy should efficiently keep or pre-fetch that the might
be used data in DRAM, or the effective access time of unified memory
will be seriously affected. In there, we set the management unit size
to 4KB to ensure that the spatial access locality can be efficiently
captured by all cache policies. The effective access time on different
benchmarks by different cache policies are shown in Figure 5, and
in these figures x-axis is to indicate the different DRAM size and y-
axis is the effective access time. According to these figures, we can
observe that the effective access time is not decreased when DRAM
size of the GPU device is over 8 MB by different cache policies. Our
design can efficiently outperform FIFO and LRU policies in different
DRAM size and benchmarks, and in FIFO and LRU policies still
does not has the great cache hit ratio even when DRAM size is large,
because the access behavior of management unit in GPU device is not
predictable and the access behavior of data is not repeated. Therefore,

these experiments strongly demonstrate that using a recording way
of the traditional cache policies can not catch up the working set.

2) DRAM Cache Hit Ratio: For evaluating the performance of
cache policies, the most intuitive way is to use cache hit ratio to
evaluate. The DRAM cache hit ratio on different benchmarks by
different cache policies are shown in Figure 6, and in these figures
x-axis is to indicate the different DRAM size and y-axis is the DRAM
cache hit ratio. According to these figures, we can observe that FIFO
and LRU policies have the same performance in AES, CP, and NN
benchmarks even on different DRAM size, and this can demonstrate
that most of data does not have strong temporal access locality in
main memory level. In BFS and MUM benchmarks, the performance
of LRU policy can outperform FIFO policy when DRAM size is
1M, but FIFO and LRU policies also have the same performance
when DRAM size is over 8MB, and this also demonstrates that
data only have very weak temporal access locality in main memory
level. However, in Figure 6 we can observe that the performance
of our design can significantly outperform other cache policies, and
this strongly demonstrates that the traditional cache policies are not
suitably used to manage the main memory of GPU device.

V. CONCLUSION

Aiming for providing an efficient low-cost energy-efficient GPU
memory extension systems, this work advocates a hardware-
controller-based memory extension solution to avoid CPUs and
GPUs from contending host DRAM and also proposes a scheduler-
aware prefetching design to further improve system performance.
Particularly, a scheduler-aware prefetching policy exploits the process
information provided by warp scheduler so as to predict memory
access patterns and perform accurate data prefetching. A series of
experiments proves that our design can efficiently improve the access
performance of unified memory for GPU device with PCIe SSD.

VI. ACKNOWLEDGEMENT

This work was supported in part by Academia Sinica under grant
no. AS-GCS-110-08 and AS-CDA-107-M05 and Ministry of Science
and Technology under grant nos. 110-2223-E-001-001, 108-2221-E-
001-001-MY3, and 108-2221-E-001-004-MY3.

5

(a) AES (b) BFS (c) CP

(d) LPS (e) MUM (f) NN

Fig. 6. DRAM Hit Ratio by Different Cache Algorithms

REFERENCES

[1] C.-F. Wu, M.-C. Yang, Y.-H. Chang, and T.-W. Kuo, “Hot-spot suppres-
sion for resource-constrained image recognition devices with nonvolatile
memory,” IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. 37, no. 11, pp. 2567–2577, 2018.
[2] Y. T. Ho, C.-F. Wu, M.-C. Yang, T.-Y. Chen, and Y.-H. Chang, “Replant-

ing your forest: Nvm-friendly bagging strategy for random forest,” in
2019 IEEE Non-Volatile Memory Systems and Applications Symposium

(NVMSA). IEEE, 2019, pp. 1–6.
[3] H. Lee, M. Shafique, and M. A. Al Faruque, “Aging-aware workload

management on embedded gpu under process variation,” IEEE Transac-

tions on Computers, vol. 67, no. 7, pp. 920–933, 2018.
[4] M. T. Satria, S. Gurumani, W. Zheng, K. P. Tee, A. Koh, P. Yu,

K. Rupnow, and D. Chen, “Real-time system-level implementation of
a telepresence robot using an embedded gpu platform,” in 2016 Design,

Automation & Test in Europe Conference & Exhibition (DATE). IEEE,
2016, pp. 1445–1448.

[5] S. Wang, G. Zhong, and T. Mitra, “Cgpredict: Embedded gpu perfor-
mance estimation from single-threaded applications,” ACM Transactions

on Embedded Computing Systems (TECS), vol. 16, no. 5s, pp. 1–22,
2017.

[6] Y.-W. Kang, C.-F. Wu, Y.-H. Chang, T.-W. Kuo, and S.-Y. Ho, “On
minimizing analog variation errors to resolve the scalability issue of
reram-based crossbar accelerators,” IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, vol. 39, no. 11, pp.
3856–3867, 2020.

[7] J. Lüttgau, M. Kuhn, K. Duwe, Y. Alforov, E. Betke, J. Kunkel, and
T. Ludwig, “Survey of storage systems for high-performance comput-
ing,” Supercomputing Frontiers and Innovations, vol. 5, no. 1, pp. 31–58,
2018.

[8] J. Boukhobza, S. Rubini, R. Chen, and Z. Shao, “Emerging nvm:
A survey on architectural integration and research challenges,” ACM

Transactions on Design Automation of Electronic Systems (TODAES),
vol. 23, no. 2, pp. 1–32, 2017.

[9] C.-F. Wu, Y.-H. Chang, M.-C. Yang, and T.-W. Kuo, “When storage
response time catches up with overall context switch overhead, what
is next?” IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. 39, no. 11, pp. 4266–4277, 2020.
[10] C.-F. Wu, Y.-H. Chang, M.-C. Yang, and T.-W. Kuo, “Joint management

of cpu and nvdimm for breaking down the great memory wall,” IEEE

Transactions on Computers, vol. 69, no. 5, pp. 722–733, 2020.
[11] N. Megiddo and D. S. Modha, “Arc: A self-tuning, low overhead

replacement cache,” in Proceedings of the 2Nd USENIX Conference on

File and Storage Technologies, ser. FAST ’03. Berkeley, CA, USA:
USENIX Association, 2003, pp. 115–130.

[Online]. Available: http://dl.acm.org/citation.cfm?id=1090694.1090708
[12] S. Bansal and D. S. Modha, “Car: Clock with adaptive replacement,”

in Proceedings of the 3rd USENIX Conference on File and

Storage Technologies, ser. FAST ’04. Berkeley, CA, USA: USENIX
Association, 2004, pp. 187–200.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1096673.1096699

[13] S. Jiang, F. Chen, and X. Zhang, “Clock-pro: An effective improvement
of the clock replacement,” in Proceedings of the Annual Conference on

USENIX Annual Technical Conference, ser. ATEC ’05. Berkeley, CA,
USA: USENIX Association, 2005, pp. 35–35.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1247360.1247395

[14] W. Li, G. Jin, X. Cui, and S. See, “An evaluation of unified memory
technology on nvidia gpus,” in Proceedings of the 15th IEEE/ACM

International Symposium on Cluster, Cloud, and Grid Computing, ser.
CCGRID ’15. IEEE Press, 2015, p. 10921098.
[Online]. Available: https://doi.org/10.1109/CCGrid.2015.105

[15] J. Zhao and Y. Xie, “Optimizing bandwidth and power of graphics
memory with hybrid memory technologies and adaptive data migration,”
in Proceedings of the International Conference on Computer-Aided

Design, ser. ICCAD ’12, 2012, pp. 81–87.
[16] M. Saxena and M. M. Swift, “Flashvm: Virtual memory management

on flash.” in USENIX Annual Technical Conference, 2010.
[17] A. Badam and V. S. Pai, “Ssdalloc: hybrid ssd/ram memory management

made easy,” in Proceedings of the 8th USENIX conference on Networked

systems design and implementation. USENIX Association, 2011, pp.
211–224.

[18] “NVLink, Pascal and Stacked Memory: Feeding the Appetite for Big
Data,” NVIDIA Developer Blog, Tech. Rep., Mar. 2014.
[Online]. Available: https://developer.nvidia.com/blog/
nvlink-pascal-stacked-memory-feeding-appetite-big-data/

[19] NAND Flash Memory MT29F64G08AB[C/E]BB,

MT29F128G08AE[C/E]BB,MT29F256G08AK[C/E]BB, Micron
Technology, 2013.

[20] NAND Flash Memory MT29F64G08CBAA[A/B],

MT29F128G08C[E/F]AAA, MT29F128G08CFAAB, Micron Technology,
2009.

[21] J. Nickolls and W. J. Dally, “The gpu computing era,” IEEE micro,
vol. 30, no. 2, pp. 56–69, 2010.

[22] V. Narasiman, M. Shebanow, C. J. Lee, R. Miftakhutdinov, O. Mutlu,
and Y. N. Patt, “Improving gpu performance via large warps and two-
level warp scheduling,” in Proceedings of the 44th Annual IEEE/ACM

International Symposium on Microarchitecture, 2011, pp. 308–317.
[23] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and T. M. Aamodt,

“Analyzing cuda workloads using a detailed gpu simulator,” in 2009

IEEE International Symposium on Performance Analysis of Systems and

Software, 2009, pp. 163–174.

6

