
OCTO+: Optimized Checkpointing of B+ Trees for
Non-Volatile Main Memory Wear-Leveling

Christian Hakert, Roland Kühn, Kuan-Hsun Chen, Jian-Jia Chen, Jens Teubner
Technische Universität Dortmund

Design Automation for Embedded Systems Group / Databases and Information Systems Group

Abstract—Steady deployment of byte addressable non-volatile
memories (NVMs) as main memory in server class computers
yields challenges on software. In order to overcome shortcomings,
as for instance low cell endurance and high access latencies,
working data can be kept in DRAM and continuously be
checkpointed to the NVM. Although this reduces the impact of
the NVM on usual execution, it shifts the endurance and latency
issue to the checkpointing. Alongside widely studied generic
wear-leveling solutions, we propose an application cooperative
wear-leveling scheme for B+ trees, that realizes an interplay
of the application and the wear-leveling. We collect memory
usage statistics during tree operations and dynamically choose
a memory mapping between the DRAM footprint and the NVM
checkpoint of the B+ tree. In an experimental evaluation, we
achieve 3× improvement in terms of memory lifetime.

Index Terms—non-volatile memory, b-tree, wear-leveling,
checkpointing, software based

I. INTRODUCTION

Continuous improvement in the field of non-volatile mem-
ory (NVM) as main memory leads to market ready solu-
tions throughout the last years. Embedded Systems with on-
chip byte addressable NVM are widely available (e.g. the
MSP430FR family from Texas Instruments), but also servers
with large amounts of NVM in the form of additional memory
modules, as for instance the Intel Optane PMem, are available.
The various challenges, NVM main memory imposes on the
system and the software, have been widely studied during the
last years on a generic level to provide application transparent
maintenance solutions. A possible interplay of specific appli-
cations with the maintenance application itself and therefore
an application-specific scheme, however, is rarely considered
due to heterogeneity of applications.

In this paper, we explore B+ trees, executed on a hybrid
memory system, where the B+ tree is persisted in NVM and
executed and modified in DRAM. As B+ trees play a central
role of database systems, improvement of memory lifetime,
latency, and energy efficiency can be eventually beneficial for
various applications. To this end, in contrast to generic wear-
leveling schemes, we investigate application cooperative wear-
leveling as one instance of maintaining NVM lifetime with
low overheads, where we explicitly modify the application and
realize an interplay of the application and the wear-leveling
scheme to achieve aging-aware software-based wear-leveling.

For such a hybrid memory system, the updates of B+ trees
are temporarily operated in DRAM but have to be finally ap-

plied to the NVM at checkpoints. This so-called checkpointing
mechanism, which may cause unnecessary writes and bit flips
if it is not done carefully. One simple solution is to perform
checkpointing periodically, in which a copy of the B+ tree is
created and written to the NVM to ensure persistency. This
simple strategy reduces the total amount of write accesses
to the NVM, but limited endurance on a NVM remains an
issue. As an example, consider a system which performs
checkpointing every minute to a phase change memory (PCM)
NVM, whose endurance is 106 write cycles [5], a memory cell
written at every checkpoint wears out within 2 years.

In this paper, we present an application cooperative wear-
leveling approach for the checkpointing of generic B+ trees,
which introduces only minimal overhead by re-evaluating and
modifying a mapping table, which maps B+ tree nodes to
blocks within the checkpoint. Our target is not only to increase
the memory lifetime but also to groom the memory space
for improving the application of further generic wear-leveling
solutions. We modify the B+ tree implementation to track
modifications to single nodes, which are applied between two
checkpoints. We further use this information to estimate the
individual aging of NVM locations afterwards. Based on this
knowledge, we run a remapping algorithm, modifying the
mapping in order to optimize the wear-out. The remapping
algorithm runs in linear time complexity with the memory
size of the B+ tree.
Our contributions:
• We provide a modified implementation of a generic B+ tree,

which tracks modification information of tree nodes during
execution.

• We further provide an application cooperative wear-leveling
algorithm, which utilizes the collected information to im-
prove the lifetime of the NVM device by modifying a
mapping of regularly created checkpoints.

• We conduct a precise evaluation of memory wear-out on
cell granularity and estimate the potential for further generic
wear-leveling.

II. RELATED WORK

The use of NVM for indexes in databases is extensively
studied in the last years. However, most work has been
dedicated to exploit features such as byte addressability. The
problem of higher latency compared to DRAM, especially
during writes, is thereby addressed by many researchers in
this effort, leading to new index structures that mainly try to
avoid unnecessary writes to NVM. Many of these approaches978-1-6654-2375-5/21/$31.00 ©2021 IEEE

attempt to reduce data movement within leaf nodes. Some of
them allow unsorted leaf nodes and maintain additional helper
structures to improve the performance of search operations
[7], [20], [25]. Other approaches enhance search operations by
dividing leaf nodes in cacheline-sized chunks that are sorted
internally, even if the node itself is not sorted [24]. Still other
approaches allow unsorted inserts into leaf nodes, whilst the
nodes are sorted occasionally [2].

While writing to NVM is identified as a critical problem
in almost all of the approaches mentioned above, the focus
is primarily on reduced write performance rather than wear-
leveling. To our knowledge, the aspect of wear-leveling, and in
particular checkpoint-based wear-leveling, plays only a minor
role for indexes so far. Chi et al. [8] propose a cost model for
B+ trees in their work that estimates wear out of nodes, but
they do not focus on wear-leveling.

Contrarily, generic in memory wear-leveling for NVMs is
widely studied in the literature. These approaches can be
classified into aging-aware approaches and non-aging aware
approaches. The former gather the information about the
memory wear-out either directly from the memory hardware
[1], [6], [10], [28], use software based approximations [11],
[12], [14], [17] or hook into the memory allocation process
[1], [19], [26]. Also non aging-aware approaches exist, which
apply blind or random memory maintenance [11], [23]. All of
these aging-aware approaches, however, do not aim to modify
the application itself. Some approaches try to take application
characteristics into account [13], [15], but these approaches
are not specific for a certain application.

III. SYSTEM MODEL

As mentioned earlier, it may be desirable to equip a system
with large amounts of NVM due to its low cost and power
consumption. However, reduced cell endurance and higher
read and write latencies make solely use of NVM as main
memory a suboptimal choice. The read latency of phase
change memory (PCM), for instance, is reported to be 2x - 6x
higher as for DRAM, the write latency even 2x - 15x [4]. The
cell endurance is reported to be as low as 106 or 107 write
cycles [5], [18], which is 108 − 109 less than the expected
endurance of DRAM. Therefore, we consider a system with
both, DRAM and NVM as main memories in this work. Both
memories are byte addressable and mapped to the physical
address space of the system, such that software freely can
decide which content to place in which memory. We further
assume unaligned memory accesses to be supported by the
memory hardware, such that unaligned copies from the DRAM
to the NVM do not cause a high overhead compared to aligned
copies. In a set of micro benchmarks on different architectures,
we observe a performance impact of not more than 30% when
copying sequential data unaligned.

Iterative write schemes are widely considered for PCM [18],
[22], [27], as they reduce the latency and increase the lifetime.
We therefore investigate the memory write trace for the NVM
and count bit flips on every single bit to assess the memory
wear-out. In this paper, we consider the cumulative count of

bit flips per memory cell to assess the wear out of these cells.
Some recent results, e.g., [18], demonstrate that the different
pulses for set and reset in PCM may cause different stresses on
the memory cells. However, we assume that over the lifetime
every single cell faces approximately similar number of bit
flips from 0 to 1 and from 1 to 0. That is, the amortized
impact can also be modeled approximately by the cumulative
count of bit flips.

IV. B+ TREE CHECKPOINTING

In order to exploit the low latency and high endurance of
DRAM, we store a background copy of the B+ tree entirely in
NVM, but cache a working copy in DRAM. Therefore, we do
not consider NVM specific modifications of B+ trees, such as
[2], [7], [20], [24], [25] and stick to a generic implementation.
In this paper, we focus on the B+ tree only, managing the data
records itself properly within the NVM is out of scope of this
work. We assume furthermore that the tree is held completely
in DRAM, as typically done by in-memory databases. With a
certain ratio, the memory content of the B+ tree is copied to
the NVM, which ensures persistency. We intentionally store
the entire tree in the NVM and do not aim to rebuild it
during restoring to reduce the time requirement for restoring
and to allow further optimizations, such as copy on write.
Tree modifications between two checkpoints result in a single
write of the modified memory to the NVM. The writing of
checkpoints itself performs write accesses to the NVM and
causes wear-out, which leads to the need of wear-leveling the
checkpoints.
Problem: As a mechanism to wear-level checkpoints, the
memory layout of the checkpoint can be modified by applying
a remapping table, which assigns every node of the B+ tree to
a new position in the NVM. This remapping table can be stored
in a metadata block of the checkpoint. The metadata block
can be handled as any other block for wear-leveling, only the
offset of the metadata blocks has to be kept centrally by the
system. In general, modifications of the mapping introduce a
high additional cost since potentially unchanged B+ tree nodes
can be mapped to a new NVM location. This not only cause
additional write accesses and therefore a higher time demand
of the checkpoint, but also a lot of bit flips in the NVM and thus
additional wear-out. Thus, a wear-leveling algorithm needs to
keep the mapping untouched whenever possible and carefully
modify the mapping if required.
Objective: To achieve this in an efficient way, knowledge
about the modifications within tree nodes is crucially required
before every checkpoint. Modifications of the DRAM copy
of the B+ tree can be either gathered with the help of special
hardware support [1], [6], [10], [27], [28], or by software based
tracking mechanisms, on the cost of overheads [11], [12],
[14], [17]. In this work, we propose an alternative lightweight
scheme, in which we collect the information about modified
memory contents specifically for B+ trees during the execution
of the tree operations (insert, update, delete, lookup) itself.
This mechanism is not bound by any limitation on temporal
and spatial granularity of a generic mechanism and can be

Node

p0 p1 . . .k0 . . . knHeader NMM

Fig. 1: Layout of a node, the different colors reflect different
memory regions

realized with minor code modifications instead of employing
an entire additional hardware or software layer.

We consider to manage the DRAM and NVM in blocks,
which are equally sized as the B+ tree nodes. We call a DRAM
block modified if modifications were applied since the last
checkpoint, i.e. the checkpoint potentially causes bit flips in
the NVM. We call a NVM block old or young, representing
the remaining lifetime. We further denote DRAM and NVM
blocks as uniform modified / uniform aged if the stress or the
age is similar for all bits of the block.

V. OCTO+ ALGORITHM

In this section, we present OCTO+, an algorithm carefully
modifying the checkpoint mapping to achieve wear-leveling.
After collecting modification information directly within the
B+ tree, the algorithm features two wear-leveling targets. First,
the algorithm performs intra block wear-leveling, which aims
to detect not uniform aged NVM blocks and map B+ tree
nodes in such a way to them during future checkpoints, so
that they become uniformly aged again. Second, the algorithm
performs inter block wear-leveling, which aims to balance the
absolute age of all NVM blocks.

A. Write Information Collection

Since read operations do not modify any data that is stored
in the B+ tree, the memory usage statistics are just collected
during insert, update or delete operations. A node of our
B+ tree (see Figure 1) can be divided into three contiguous
memory regions. The first region contains the header of the
node. The header stores all information like fill level and the
type of a node (leaf node or inner node) that are important
for tree-internal operations like splits, merges or redistribution.
The second region contains an array of keys, while pointers to
child nodes or values are stored in an array in the third region.
To keep the collection of the modified parts of a node as simple
as possible, we extended the header with a node modification
mask (NMM), which is a fixed width bitmask. The insertion
of the NMM slightly enlarges the header. However, given a
fixed size for each node this may only result in a slightly
lower capacity of keys and values/pointers per node. In the
following we assume that this bitmask contains 8 bits. The
mask indicates which parts of the node were modified after the
last checkpoint and therefore must be considered for the next
checkpoint. The modifications to the different procedures for
inserts or updates are also moderate. Every time a key/pointer
or key/value pair is inserted, we set the corresponding bit that
is mapped to the position of the key and the value/pointer
array in the node modification map. Even if this approach is
coarse grained, the kind of meta information that is stored in

B
+

tr
ee

no
de

s

...

...

N
V

M
bl

oc
ks

11110011

1

11110000

00001111

2

Fig. 2: OCTO+ tree based algorithm1

the node itself can be easily extended to allow a more fine
grained partition of the node or to adapt our approach to other
algorithms and data structures. It should be noted that although
the node modification mask is stored in the B+ tree nodes
itself, it does not need to be written out to a checkpoint and
therefore modifications to the node modification mask itself
do not need to be considered in the context of wear-leveling.

B. Remapping Decisions

The mapping of B+ tree nodes to NVM blocks is re-
evaluated on every checkpoint and potentially updated. The
decision for modifications of the mapping 1 identifies not
uniform aged NVM blocks and remove them from the current
mapping, 2 maps unmapped tree nodes to NVM blocks and

3 updates the internal age counters of modified NVM blocks.
We maintain an internal aging representation of the NVM

blocks in the form of eight 8-bit counters, where each counter
indicates the age of one eighth of the NVM block. These
counters are stored in a single 8-byte CPU word and modified
with bitwise logic operations. The counters are updated with
the modification information of the tree nodes in step 3. Since
our employed wear-leveling scheme is incremental and aims
to achieve a wear-leveled memory at any time, the internal
aging representation does not need to be checkpointed itself.
If this information is lost, the memory can be assumed to be
wear-leveled and all counter values can be reset to 0.

1) Intra Block Wear-Leveling: In order to identify not uni-
form aged blocks, the aging representation of all currently used
NVM blocks is checked. If any of the 8 counters within each
block exceeds the average of the block by a certain threshold,
this block is released from the mapping. This procedure results
in a set of unmapped B+ tree nodes and unmapped NVM
blocks. In the next step, unmapped tree nodes are mapped to
the previously released NVM blocks. We construct an 8-bit
bitmap for every NVM block, where a 1 bit indicates that the
corresponding counter is greater than the mean of all counters
for this block and a 0 bit indicates a counter lower than
the mean, respectively. According to this bitmap, the spare
NVM blocks are stored in 256 lists, which are indexed by

1The B+ tree nodes are indicated on the left, gray areas are modified
sections, white areas are unmodified sections. The NVM blocks are indicated
on the right, gray areas are aged section, white areas are young sections,
respectively. For the tree node, the 8-bit bitmap is inverted. The central
mapping tree datastructure is used to store unmapped NVM blocks in step 1
and assign tree blocks in step 2.

a binary tree of depth 8, called mapping tree, where the left
child indicates a 0 bit and the right child indicates a 1 bit.
In consequence, insertion of blocks into this tree requires a
constant overhead of 8 decisions. Additionaly, each node of the
mapping tree maintains a counter, how many NVM blocks are
currently stored in lists underneath that node. Afterwards, the
unmapped tree nodes are mapped to NVM blocks by traversing
the tree with the bitwise inverse node modification mask. In
total, this procedure maps tree nodes to NVM blocks in such
a way, that modified regions of the tree node are placed on
young parts of the NVM. This two step procedure is illustrated
in Figure 2. When mapping tree nodes to NVM blocks, the
block counter within each node of the mapping tree makes
sure that searching for a spare NVM block does not end at an
empty list, even though this may violate the optimality of the
mapping.

After the mapping is updated according to the aforemen-
tioned procedure, the aging representation of the NVM blocks
is updated by incrementing the 8-bit counters with the corre-
sponding bit of the node modification mask. If any counter
reaches the maximum value, all counters for all NVM blocks
are divided by 2. This keeps the relative aging information
in the aging representation. To avoid thrashing within the
mapping, remapped NVM blocks are excluded from the first
step for a certain amount of subsequent checkpoints. We set
this amount to the aforementioned threshold, which is used to
decide if a block should be released from the mapping.

2) Inter Block Wear-Leveling: The mapping decision as
detailed in Section V-B only aims to level uneven aging
patterns within tree node sized NVM blocks by carefully
updating the mapping during the checkpointing. Even though
this method improves the NVM lifetime already, it may still
happen that some NVM blocks face a higher total amount of
modifications than other blocks. To also tackle this situation,
we equip our remapping decision with an additional aging
aware scheme. During every checkpoint, the maximum of the
8 counters for each NVM block is determined. If the difference
of these values for the youngest and the oldest block exceeds
a configurable threshold, the mapped B+ tree node of both
of these blocks is exchanged. Due to the fact that we divide
all counters for all blocks on an overflow, also the relation of
the absolute aging of NVM blocks remains. Determining the
youngest and oldest blocks does not induce much additional
overhead since during a checkpoint anyway all blocks have to
be traversed once for the intra block wear-leveling.

C. Static Optimization

The OCTO+ algorithm, as described before, aims to tackle
intra and inter block wear-leveling. This, however, is done by
approximating the memory age and modification with the help
of a coarse 8-bit bitmask. A non uniform memory usage below
the granularity of node size divided by 8 therefore cannot be
handled. A special case of this fine grained non unformity
is uneven usage within single words. To overcome this, we
shift every B+ tree node during checkpointing by a fixed
offset between 0 and 7 bytes. This requires unaligned memory

access during the checkpoint, as mentioned in Section III.
This method requires no further metainformation, since we
determine the shift offset by calculating the node id modulo 8.
As the shift offset does not change over time for every node,
this also does not introduce any extra memory write overhead.

VI. EVALUATION

In order to evaluate the improvement in terms of lifetime
of the NVM of the algorithm presented in this paper, we
implement it in a full system simulation setup [16]. This
allows us to run the B+ tree, the mapping algorithm and also
the checkpointing on a simulated ARMv8 processor [3]. The
additional employment of the NVMain2.0 plugin [21] further
allows to trace each and every memory access to a trace file
and analyze it with regards to the amount of flips per bit
afterwards.

A. Evaluation Setup

For our evaluation we choose a node size and therefore
a block size of 1024 Bytes for our tree, since it offers a
good compromise between the fanout of a B+ node and
the granularity of the write information collection. We then
evaluate the tree with three different data sets with a key and
value size of 8 byte each. The first data set contains values
in a monotonic order. This data set simulates the creation
of a B+ tree on presorted data, which results in a tree that
contains many half filled nodes. Due to the monotonic order
of the keys, older leaf nodes will not be modified anymore.
The second data set consists of random values, which leads
to more modifications also of older nodes. Furthermore, we
choose keys from YCSB [9] for the third data set.

Based on these data sets, we investigate two different tree
sizes and 3 different insert and update distributions each. We
consider a small tree, at which we perform 20000 operations
and a big tree, at which we perform 50000 operations. To
simulate insert or update heavy workloads, we further split
the operations into either 100% inserts and 0% updates, 75%
inserts and 25% updates or 50% inserts and 50% updates. In
every configuration, we perform a checkpoint after 50 tree
operations for the small tree and after 100 tree operations
for the big tree, which leads to a total amount of 400
checkpoints for the small trees and of 500 checkpoints for
the big trees. As a baseline, we consider a static mapping
for the checkpoint, which remains unchanged. In comparison,
we run the checkpointing with our intra and inter block
remapping algorithm, which we call OCTO+ in the following.
We further compare to only the inter block wear-leveling
without intra block wear-leveling, which is denoted as aging
aware (AA) in the following. In addition, we implement a
random modification of the mapping table, called RANDOM,
at every checkpoint and another strategy, which inheres a ring
based remapping scheme [23]. This strategy, called RING,
applies a constantly increasing shift offset to every NVM block
during the checkpoint and wraps around at the end of a block.
Due to preliminary experiments, we set the threshold for the

OCTO+ AA RANDOM RING

11

2
.2

1
2
.2

1

2
.2

1
2
.2

1

0
.1

5
0
.1

5

0
.0

8
0
.0

8

2
.2

1
2
.2

1

2
.2

1
2
.2

1

0
.1

6
0
.1

6

0
.0

8
0
.0

8

3
.1

0
3
.1

0

3
.1

0
3
.1

0

0
.1

5
0
.1

5

0
.0

8
0
.0

8

1
.6

9
1
.6

9

1
.1

7
1
.1

7

0
.4

9
0
.4

9

0
.2

7
0
.2

7

1
.6

4
1
.6

4

1
.0

0
1
.0

0

0
.4

9
0
.4

9

0
.2

4
0
.2

4

1
.6

5
1
.6

5

1
.3

4
1
.3

4

0
.5

3
0
.5

3

0
.2

5
0
.2

5

1
.2

4
1
.2

4

1
.1

6
1
.1

6

0
.4

0
0
.4

0

0
.2

7
0
.2

7

1
.1

3
1
.1

3

1
.1

4
1
.1

4

0
.3

4
0
.3

4

0
.2

3
0
.2

3

0
.9

5
0
.9

5

1
.0

2
1
.0

2

0
.2

8
0
.2

8

0
.1

8
0
.1

8

100/0 linear 75/25 linear 50/50 linear

100/0 random 75/25 random 50/50 random

100/0 ycsb 75/25 ycsb 50/50 ycsb

(a) Small: Lifetime Improvement (LI)

OCTO+ AA RANDOM RING

11

1
.1

2
1
.1

2

1
.1

2
1
.1

2

0
.0

3
0
.0

3

0
.0

2
0
.0

2

1
.1

0
1
.1

0

1
.1

0
1
.1

0

0
.0

3
0
.0

3

0
.0

2
0
.0

2

1
.0

8
1
.0

8

1
.0

8
1
.0

8

0
.0

2
0
.0

2

0
.0

1
0
.0

1

1
.4

2
1
.4

2

1
.0

2
1
.0

2

0
.3

1
0
.3

1

0
.0

4
0
.0

4

1
.3

8
1
.3

8

1
.0

2
1
.0

2

0
.3

1
0
.3

1

0
.0

4
0
.0

4

1
.2

7
1
.2

7

1
.0

4
1
.0

4

0
.3

1
0
.3

1

0
.0

4
0
.0

4

1
.2

8
1
.2

8

1
.0

5
1
.0

5

0
.3

6
0
.3

6

0
.0

6
0
.0

6

1
.1

8
1
.1

8

1
.0

4
1
.0

4

0
.3

5
0
.3

5

0
.0

4
0
.0

4

0
.9

4
0
.9

4

1
.0

2
1
.0

2

0
.2

2
0
.2

2

0
.0

2
0
.0

2

100/0 linear 75/25 linear 50/50 linear

100/0 random 75/25 random 50/50 random

100/0 ycsb 75/25 ycsb 50/50 ycsb

(b) Small: Wear-Leveling Potential (WLP)

OCTO+ AA

11

1
.4

1
1
.4

1

1
.5

0
1
.5

01
.7

3
1
.7

3

1
.1

9
1
.1

9

1
.5

7
1
.5

7

1
.1

2
1
.1

2

1
.7

1
1
.7

1

1
.0

8
1
.0

81
.3

3
1
.3

3

1
.0

7
1
.0

7

1
.2

0
1
.2

0

1
.0

9
1
.0

9

1
.0

8
1
.0

8

1
.0

5
1
.0

5

50/50 linear

100/0 random

75/25 random

50/50 random

100/0 ycsb

75/25 ycsb

50/50 ycsb

(c) Big: Lifetime Improvement (LI)

OCTO+ AA

11

1
.0

4
1
.0

4

1
.0

5
1
.0

5

1
.4

6
1
.4

6

1
.0

2
1
.0

2

1
.3

7
1
.3

7

1
.0

2
1
.0

2

1
.2

8
1
.2

8

1
.0

1
1
.0

1

1
.2

5
1
.2

5

1
.0

2
1
.0

2

1
.0

9
1
.0

9

1
.0

3
1
.0

3

0
.8

5
0
.8

5 1
.0

2
1
.0

250/50 linear

100/0 random

75/25 random

50/50 random

100/0 ycsb

75/25 ycsb

50/50 ycsb

(d) Big: Wear-Leveling Potential (WLP)

Fig. 3: Wear-Leveling Improvement

unmapping of not uniform aged blocks in intra block wear-
leveling to 15, the threshold for inter block wear-leveling to
5, respectively. These experimentally determined parameters
achieve adequate wear-leveling results while not stressing the
NVM with many additional bit flips.

B. Evaluation Metrics

Assessing the improvement in terms of memory lifetime is
based on two separate considerations in this work. We assume
that the NVM becomes unusable once the first cell wears
out. This could be resolved with spare cells and detection of
dead cells, however, such static improvements can be applied
independently. Under this assumption, we assess the maximum
amount of bit flips over the entire allocated NVM space for
the B+ tree. We compare this peak age for the different
configurations and compute an improvement factor LI , which
compares to the corresponding baseline (unmodified mapping).

Although the above metric reports the theoretic lifetime
improvement if the B+ tree and checkpointing algorithm runs
in isolation on the limited memory, global wear-leveling across
many applications is not considered.

WLP (g) = mean

(
max
[0,g)

(age(x)), ..., max
[m·g,n)

(age(x))

)
(1)

We analyze the potential, our algorithm delivers for such a
global scheme by considering the mean value of the ages of
NVM regions on a given granularity. Provided with the aging
of each region, a perfect global wear-leveling could arrange
regions in such a way, that exactly the mean age is applied
to all regions. Therefore, with a lower mean age a higher
lifetime can be achieved by a global wear-leveling scheme. We
compute this wear-leveling potential WLP by Equation (1).
m denotes the number of NVM regions, g the granularity,

respectively. For every configuration, we compute this number
with the granularity of memory pages (b = 4096 · 8), since
generic wear-leveling techniques potentially utilize the MMU
to remap 4kB memory pages. The ratio of the WLP metric of
a configuration with the corresponding baseline then indicates
the improvement in wear-leveling potential.

C. Evaluation Results

Figure 3 depicts the resulting lieftime improvement and
wear-leveling potential for the aforementioned configurations.
All illustrated numbers are the computed improvement factor
in comparison to the baseline (static and unmodified mapping).
Thus, a number larger than one indicates an improvement, a
number smaller than one indicates a diminishment. The left
subfigure each illustrates the computed lifetime improvement,
the right subfigure the wear-leveling potential improvement
respectively. The results are grouped by the operating wear-
leveling strategy, every bar represents a tree and input data
configuration. For the big tree configurations, we only include
linear insert patterns with 50% insert distribution and also only
OCTO+ and AA configurations due to limited simulation time.

It can be observed that the improvement in terms of memory
lifetime strongly depends on the wear-leveling strategy and
input data configuration. It can be reported that both, the
random and the ring strategy, decrease the memory lifetime
significantly by at last 45%. This supports our assumption,
that additional wear-leveling actions have to be performed very
careful and very seldom. Blindly remapping memory blocks
during checkpoiting induces the risk of applying heavy writes
to a memory location, which may not have been modified
anyway. Furthermore, it can be seen that for the input data
configurations with linear data, we achieve up to 3× lifetime
improvement with inter block wear-leveling only. It can be

observed, that solely applying inter block wear-leveling or
combining inter and intra block wear-leveling turns out to be
a decision, which is dependent on the input data. For instance
for linear input data, additional intra block wear-leveling does
not gain further improvement. Contrarily, for random input
data, applying additional intra block wear-leveling increases
the lifetime improvement further up to a factor of 1.69×
for small trees. For the YCSB input data, performing inter
block wear-leveling solely or inter and intra block wear-
leveling combined reports to not cause a huge difference. The
potential for additional global wear-leveling on the granularity
of 4096 byte memory pages (WLP) is only decreased in one
case, compared to a static and unmodified mapping. Indeed
combined inter and intra block wear-leveling improves the
potential by a considerable factor of up to 1.46×, which
possibly further increases memory lifetime when a global
wear-leveling scheme is employed. In general, the results for
small and big trees show a consistent result.

VII. CONCLUSION AND OUTLOOK

In this paper, we propose an orthogonal extension to generic
application transparent in memory wear-leveling for non-
volatile main memories. We intentionally establish an interplay
of a B+ tree as the application and the wear-leveling subsystem
by hooking into checkpointing of the B+ tree and exploit the
mapping between the tree and the checkpoint to perform a
lightweight wear-leveling. A precise bitwise evaluation reports
up to 3× extended memory lifetime while the memory space
is even further groomed to improve coarse-grained generic
wear-leveling.

In future work, we plan to enhance the evaluation to also
consider metadata information, which are required for the
checkpointing but are not considered in this paper. Further-
more, we plan to investigate NVM optimized B+ trees from
the literature. Applying the B+ tree wear-leveling not only
during checkpointing can be also considered.

ACKNOWLEDGEMENTS

This paper has been supported by Deutsche Forschungs-
gemeinshaft (DFG), as part of the project OneMem-
ory (405422836) and SFB 876, subprojects A1 and A2
(http://sfb876.tu-dortmund.de/).

REFERENCES

[1] H. Aghaei Khouzani, Y. Xue, C. Yang, and A. Pandurangi. Prolonging
pcm lifetime through energy-efficient, segment-aware, and wear-resistant
page allocation. In Proceedings of the 2014 international symposium
on Low power electronics and design, pages 327–330, 2014.

[2] J. Arulraj, J. Levandoski, U. F. Minhas, and P.-A. Larson. Bztree:
A high-performance latch-free range index for non-volatile memory.
Proceedings of the VLDB Endowment, 11(5):553–565, 2018.

[3] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, et al. The gem5
simulator. ACM SIGARCH computer architecture news, 39(2):1–7, 2011.

[4] J. Boukhobza, S. Rubini, R. Chen, and Z. Shao. Emerging nvm: A survey
on architectural integration and research challenges. ACM Transactions
on Design Automation of Electronic Systems (TODAES), 23(2):1–32.

[5] Y.-M. Chang, P.-C. Hsiu, Y.-H. Chang, C.-H. Chen, T.-W. Kuo, and
C.-Y. M. Wang. Improving pcm endurance with a constant-cost wear
leveling design. ACM Transactions on Design Automation of Electronic
Systems (TODAES), 22(1):1–27, 2016.

[6] C.-H. Chen, P.-C. Hsiu, T.-W. Kuo, C.-L. Yang, and C.-Y. M. Wang.
Age-based pcm wear leveling with nearly zero search cost. In Proceed-
ings of the 49th Annual Design Automation Conference, pages 453–458.

[7] S. Chen and Q. Jin. Persistent b+-trees in non-volatile main memory.
Proceedings of the VLDB Endowment, 8(7):786–797, 2015.

[8] P. Chi, W.-C. Lee, and Y. Xie. Adapting b+-tree for emerging nonvolatile
memory-based main memory. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 35(9):1461–1474, 2015.

[9] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears.
Benchmarking cloud serving systems with ycsb. In Proceedings of the
1st ACM symposium on Cloud computing, pages 143–154, 2010.

[10] J. Dong, L. Zhang, Y. Han, Y. Wang, and X. Li. Wear rate leveling:
Lifetime enhancement of pram with endurance variation. In Proceedings
of the 48th Design Automation Conference, pages 972–977, 2011.

[11] A. P. Ferreira, M. Zhou, S. Bock, B. Childers, R. Melhem, and D. Mossé.
Increasing pcm main memory lifetime. In 2010 Design, Automation &
Test in Europe Conference & Exhibition (DATE 2010).

[12] V. Gogte, W. Wang, S. Diestelhorst, A. Kolli, P. M. Chen,
S. Narayanasamy, and T. F. Wenisch. Software wear management for
persistent memories. In 17th USENIX Conference on File and Storage
Technologies (FAST’19).

[13] C. Hakert, K.-H. Chen, and J.-J. Chen. Can wear-aware memory
allocation be intelligent? In Proceedings of the 2020 ACM/IEEE
Workshop on Machine Learning for CAD, pages 83–88, 2020.

[14] C. Hakert, K.-H. Chen, P. R. Genssler, G. von der Brüggen, L. Bauer,
H. Amrouch, J.-J. Chen, and J. Henkel. Softwear: Software-only in-
memory wear-leveling for non-volatile main memory. arXiv preprint.

[15] C. Hakert, K.-H. Chen, S. Kuenzer, S. Santhanam, S.-H. Chen, Y.-H.
Chang, F. Huici, and J.-J. Chen. Split’n trace nvm: Leveraging library
oses for semantic memory tracing. In 2020 9th Non-Volatile Memory
Systems and Applications Symposium (NVMSA), pages 1–6. IEEE, 2020.

[16] C. Hakert, K.-H. Chen, M. Yayla, G. von der Brüggen, S. Blömeke,
and J.-J. Chen. Software-based memory analysis environments for in-
memory wear-leveling. In 2020 25th Asia and South Pacific Design
Automation Conference (ASP-DAC), pages 651–658. IEEE, 2020.

[17] K. Huang, Y. Mei, and L. Huang. Quail: Using nvm write monitor to
enable transparent wear-leveling. Journal of Systems Architecture.

[18] M. N. I. Khan, A. Jones, R. Jha, and S. Ghosh. Sensing of Phase-Change
Memory, pages 81–102. Springer International Publishing, Cham, 2019.

[19] W. Li, Z. Shuai, C. J. Xue, M. Yuan, and Q. Li. A wear leveling aware
memory allocator for both stack and heap management in pcm-based
main memory systems. In 2019 Design, Automation & Test in Europe
Conference & Exhibition (DATE), pages 228–233. IEEE, 2019.

[20] I. Oukid, J. Lasperas, A. Nica, T. Willhalm, and W. Lehner. Fptree:
A hybrid scm-dram persistent and concurrent b-tree for storage class
memory. In Proceedings of the 2016 International Conference on
Management of Data, pages 371–386, 2016.

[21] M. Poremba, T. Zhang, and Y. Xie. Nvmain 2.0: A user-friendly memory
simulator to model (non-) volatile memory systems. IEEE Computer
Architecture Letters, 14(2):140–143, 2015.

[22] M. K. Qureshi, M. M. Franceschini, A. Jagmohan, and L. A. Lastras.
Preset: Improving performance of phase change memories by exploiting
asymmetry in write times. ACM SIGARCH Computer Architecture News.

[23] M. K. Qureshi, J. Karidis, M. Franceschini, V. Srinivasan, L. Lastras,
and B. Abali. Enhancing lifetime and security of pcm-based main
memory with start-gap wear leveling. In 2009 42nd Annual IEEE/ACM
international symposium on microarchitecture (MICRO).

[24] C. Wang and S. Chattopadhyay. Isle-tree: A b+-tree with intra-cache line
sorted leaves for non-volatile memory. In 2020 IEEE 38th International
Conference on Computer Design (ICCD), pages 573–580. IEEE, 2020.

[25] J. Yang, Q. Wei, C. Wang, C. Chen, K. L. Yong, and B. He. Nv-tree: A
consistent and workload-adaptive tree structure for non-volatile memory.
IEEE Transactions on Computers, 65(7):2169–2183, 2015.

[26] S. Yu, N. Xiao, M. Deng, Y. Xing, F. Liu, Z. Cai, and W. Chen. Walloc:
An efficient wear-aware allocator for non-volatile main memory. In 2015
IEEE 34th International Performance Computing and Communications
Conference (IPCCC), pages 1–8. IEEE, 2015.

[27] P. Zhou, B. Zhao, J. Yang, and Y. Zhang. A durable and energy efficient
main memory using phase change memory technology. ACM SIGARCH
computer architecture news, 37(3):14–23, 2009.

[28] L. Zhu, Z. Chen, F. Liu, and N. Xiao. Wear leveling for non-volatile
memory: A runtime system approach. IEEE Access.

