
Exploring Skyrmion Racetrack Memory for High
Performance Full-Nonvolatile FTL

Ya-Hui Yang, Yu-Pei Liang∗, Cheng-Hsiang Tseng, Shuo-Han Chen
Department of Computer Science and Information Engineering, National Taipei University of Technology, Taipei, Taiwan

∗Institute of Information Science, Academia Sinica, Taipei, Taiwan
e-mail:romotty@gmail.com, ∗betty171920@iis.sinica.edu.tw, {t107590451, shchen}@ntut.edu.tw

Abstract—Skyrmion racetrack memory (SK-RM) has shown
great potential for replacing DRAM or SRAM with its high
density and great access performance. Unlike other non-volatile
random access memory (NVRAM), SK-RM supports random
updates through injecting or removing skyrmions on a race-
track. Injected skyrmions can be shifted along the racetrack to
store data. Nevertheless, since most previous studies focus on
minimizing the number of inject or shift operations, the unique
feature of moving skyrmions vertically between racetracks and
the possibility of utilizing free or invalid memory space to
preserve skyrmions receive much less attention. In this paper, we
observe that vertical movement and preservation of skyrmions
provide a great opportunity to mitigate the possible run time per-
formance degradation issue of NVRAM-based flash translation
layer (FTL), as writes of mapping entries typically induce more
overhead than reads on NVRAM. To fully exploit the benefits
of SK-RM within the FTL mechanism, this paper proposes an
SK-FTL to enable a high-performance and non-volatile FTL
by preserving and reforming skyrmions over multiple data
writes. Experimental results suggest that SK-FTL can effectively
improve the performance of non-volatile FTL.

Index Terms—SK-RM, skyrmions, racetrack memory, FTL,
NAND Flash, NVRAM

I. INTRODUCTION

Skyrmion racetrack memory (SK-RM) has been regarded
as a great non-volatile random access memory (NVRAM)
candidate in computer systems owing to its competitive
read/write performance. Skyrmion is a topologically pro-
tected particle-like magnetization entry, which can be in-
serted/shifted/detected/removed on racetracks for storing data
and supporting random information accesses and updates. As
skyrmions can be shifted horizontally along racetracks or
vertically between racetracks, SK-RM shows the possibility of
preserving skyrmions in unused memory space and reforming
those preserved skyrmions to compose new data pattern of
future writes. Nevertheless, the methodology of preserving
skyrmions in unused memory space over multiple data writes
has not been explored before. Such observation motivates
this paper to investigate and exploit the preservation and
reformation of skyrmions to enhance the run time perfor-
mance of the NVRAM-based flash translation layer (FTL).
Meanwhile, since bit difference (i.e., the number of data bits
1) between two successive data writes leads to skyrmion
insert and remove operations, the write data pattern to SK-
RM should also be carefully tuned to avoid extra latency
due to excessive skyrmion insert and remove operations. The
technical difficulty of the proposed SK-FTL lies in how to
properly preserve and reuse skyrmions over multiple data

writes and tune the bit pattern of FTL updates to avoid
excessive skyrmion insert and remove operations.

Flash translation layer (FTL) has been widely adopted
by NAND flash-based storage devices, such as solid-state
drives (SSDs), to manage the inherent constraints of NAND
flash memory. The main task of FTL is to remap data write
requests with logical block address (LBA) to allocatable
NAND flash storage space with physical block address (PBA).
Based on the emergence of NVRAM, NVRAM-based FTL
mechanisms [3, 7, 9] have been proposed to host FTL on
NVRAM, such as Phase Change Memory (PCM) [9] and Spin
Torque Transfer (STT) RAM [8]. Nevertheless, according to
Table I, writes on NVRAM usually induce longer latency than
reads. In other words, when compared with DRAM-based
FTL, the lengthened write latency of NVRAM may degrade
the run time performance of FTL.

The emergence of SK-RM provides a great opportunity
for resolving the run time performance degradation issue
of NVRAM-based FTL, owing to the following reasons.
First, as shown in Table I, the latency difference between
read (detect) and write (insert) on SK-RM is much smaller
than that of other NVRAM. Second, SK-RM can further
lower the number of insert operations by allowing injected
skyrmions to be reformed on the racetrack for composing
the data pattern of the next data write and it is known as
the permutation write [12]. Nevertheless, when the number
of data bits 1 changes between successive data writes to
SK-RM, the inject or remove operation is still required to
either increase or decrease the number of skyrmions. This
is because there is no extra region on racetracks for tempo-
rally caching skyrmions. To resolve such limitation without
including additional racetracks, this paper proposes utilizing
the free or invalid memory space on racetracks for preserving
skyrmions. Unlike the permutation write, those skyrmions
can be preserved over multiple data writes on the same
racetrack as long as the memory space is unused. When the
unused memory space is allocated, those preserved skyrmions
can then be reformed to form the data pattern of the new
data writes. Furthermore, this paper also proposes utilizing
the vertical shift feature of SK-RM to preserve and reuse
skyrmions between racetracks.

To benefit from the preservation and reformation capabil-
ities of skrymions for non-volatile FTL, this paper proposes
a SK-FTL to preserve skyrmions in unused memory space
through both horizontal and vertical shift, while minimizing
the bit difference between successive data writes through aug-
menting the space allocator of FTL. SK-FTL introduces three978-1-6654-2375-5/21/$31.00 ©2021 IEEE



TABLE I: Comparison of DRAM and NVRAM [3, 4, 8].

Latency DRAM PCM STT-RAM SK-RM
Read (ns) 15 50-70 1.62 0.1

Write (ns) 15 150-220
‘0’ to ‘1’: 6
‘0’ to ‘1’: 4

‘0’ to ‘1’: 1.0
‘1’ to ‘0’: 0.6

main components: (1) the SK-aware allocator, (2) the vertical
shift mechanism, and (3) the active SK buffering scheme.
The SK-aware allocator is first used to allocate free NAND
flash space to incoming data writes while aiming to minimize
the bit difference between the previously-stored PBA and
the to-be-allocate PBA. Next, the vertical shift mechanism
is included to manage the vertical movement of skyrmions
between racetracks. Finally, the active SK buffering scheme
is used for preserving injected skyrmions in unused memory
space and reforming preserved skyrmions to compose the data
pattern of new entry updates in FTL. Evaluation results show
that SK-FTL can effectively reduce the accumulated insert
and remove latencies of skyrmions by an average of 62.69%
and 93.25%, when compared with native page-based FTL [1]
on SK-RM with permutation write enabled [12].

The organization of this paper is summarized as follows.
The background and motivation are described in Section II.
The proposed SK-FTL is detailed in Section III. Next, experi-
mental results are presented in Section IV. Finally, Section V
concludes this paper with a few remarks.

II. BACKGROUND AND MOTIVATION

A. NVRAM-based FTL

Owing to the high-performance and shock-resistance char-
acteristics of NAND flash memory, NAND flash-based stor-
age devices have gradually replaced hard disk drives (HDDs)
as the mainstream storage medium. Different from HDDs,
NAND flash memory has a few inherent limitations, which
include the erase-before-write constraint, the limited number
of program/erase (P/E) cycles, and asymmetric access/erase
units. For instance, regarding the unit difference of NAND
flash memory, the basic access unit is a page, while the
minimum erase unit is a block, which consists of a few
hundred pages. Meanwhile, due to the erase-before-write
constraint, data updates cannot be written again to the same
page and are typically written to other free pages through
out-of-place updates. Such limitations require an additional
management layer, namely the flash translation layer (FTL),
within NAND flash-based storage devices for allowing NAND
flash memory to be used as a block-based storage device.

One of the main components in FTL is the space alloca-
tor, which is utilized to comply with the erase-before-write
constraint of NAND flash memory by redirecting data writes
or updates to free pages. To track the physical pages of
each data write, the mapping from logical block address to
physical block address (LBA-to-PBA) is recorded by FTL
as a mapping entry. Mapping entries are stored on dedicated
NAND flash pages, which are also known as the metadata
area, for persistence. On DRAM-based FTL, mapping entries
are cached on the DRAM when the corresponding page is
updated or accessed. Then, cached mapping entries on DRAM

are written back to pages in the metadata area for persistence
when entries are evicted or storage devices are powered off.

Loading and storing mapping entries not only induce
additional internal traffics but also lead to the issue of
write amplification. To alleviate the management overhead of
mapping entries in FTL, nonvolatile random access memory
(NVRAM) has been proposed to replace DRAM on NAND
flash-based storage devices. Owing to the byte-addressability
and nonvolatility of NVRAM, NVRAM can be used to store
mapping entries and receive updates without rewriting other
entries. As one of the main concerns of NVRAM is the
lifetime, numerous NVRAM-based FTL mechanisms have
been proposed with the consideration of NVRAM lifetime
or bit-level wear leveling. For instance, Kim et al. [7] include
PRAM in NAND Flash storage devices for establishing a
high-performance embedded storage subsystem. Meanwhile,
Liu et al. [9] propose a PCM-FTL to store the mapping table
in the PCM instead of DRAM and focus on enhancing the
endurance of the PCM by minimizing the number of bit flips
in the PCM. More recently, Cheng et al. [3] adopt NAND-
SPIN as the medium for NVRAM-based FTL and propose
a window-based wear leveling to resolve the uneven bit-
level wearing issue of NVRAM-based FTL. Nevertheless,
since writes on NVRAM are typically more time-consuming
than reads, the possible run-time performance degradation on
NVRAM-based FTL should also be examined thoroughly.

B. Skyrmion Racetrack Memory

Skyrmion racetrack memory (SK-RM) has competitive
advantages, including the non-volatility, similar access per-
formance, and higher storage density when compared with
SRAM or DRAM. SK-RM is an evolved version of domain-
wall racetrack memory (DW-RM) and outperforms DW-RM
in terms of cell size and current density [6] by utilizing
topologically protected magnetic skyrmions for storing infor-
mation. Data bits 1 and 0 are represented by the presence or
absence of skyrmions on the racetrack, which has multiple bit
zones for holding skyrmions. To support random updates on
SK-RM, skyrmions are manipulated through current applied
to the ends of the racetrack and access ports. The structure
and operations of SK-RM are shown in Figure 1.

Figure 1(a) illustrates an example of SK-RM with 3 ac-
cess ports and 11 bit zones. The presence and absence of
skyrmions in bit zones are denoted as skyrmion and non-
skyrmion for data bits 1 and 0, respectively. The distance
between access ports on the racetrack is referred to as
interport distance and is defined by the physical layout of
the SK-RM. The regions located beside the right-most and
left-most access ports are the overhead regions for temporally
holding skyrmions out of the racetracks during manipulating
skyrmions. Figure 1(b) then shows the details of shift oper-
ation. The shift current can be provided at both ends of the
racetrack and access ports to either end of the racetrack and
access ports to drive all the skyrmions and non-skyrmions
along the direction of the applied current. Notably, it is
also possible to shift skyrmions onto different racetracks
through access ports [5]. Next, as shown in Figure 1(c), to
insert skyrmions for representing data bits 1, skyrmions are



Skyrmion:
bit 1

(a) Skyrmion racetrack with 11 bit zones and 3 access ports

Shift
MOS

Shift
MOS

Access ports

Interport
Distance

(b) Shift (c) Insert (Write)

(d) Remove (Delete) (e) Detect (Read)

Detector

Head Tail

Top

Bottom

Non skyrmion:
bit 0

Head Tail

Top

Bottom

Injector

Head Tail

Top

Bottom

Head Tail

Top

Bottom

JInject

Jremove

Jshift

Overhead
Region

Overhead
Region

Fig. 1: Skyrmion racetrack memory (SK-RM), which is
composed of racetracks and access ports. SK-RM supports
random information accesses and updates through detecting,
injecting, shifting and removing skyrmions.

injected by the injector at the access port and shifted onto
the racetrack. Oppositely, for data bits 0, no inject operation
is needed as data bits 0 are represented by the absence of
skyrmions. On the other hand, as shown in Figure 1(d), during
the remove operation, removal currents are applied to either
end of the racetrack or access ports to over-shift skyrmions
out of other ends. For reading data bits on SK-RM, both
skyrmions and non-skyrmions are shifted across the detectors
at the intersection of access ports and the racetrack for reading
the stored bits. The latency of each skyrmion operation can
be summarized in Table II. Notably, the remove and insert
latencies include one shift operation for shifting skyrmions
onto or from race tracks.

TABLE II: Latency of SK-RM operations [4].

Operations Read Shift Remove Insert

Latency 0.1 ns 0.5 ns 0.8 ns 1 ns

As insert operation induces the longest latency among
skyrmion operations, studies have been proposed to reduce
the number of shift operations by optimizing the data layout
strategies. For instance, Yang et al. [12] propose a new
data update strategy, namely permutation write, for SK-
RM through reforming the existing skyrmions to reduce the
number of skyrmion injections for composing the next data
pattern. On the other hand, Hsieh et al. [4] propose a back-
to-back mechanism to minimize the shift operations during
the sorting process. Even though strategies for reducing the
number of shift and inject operations have been proposed, this
paper argues that the latencies of remove and inject opera-
tions should be considered at the same time between data
writes because data bit difference between two successive
writes could lead to excessive inject or remove operations
over time.

C. Motivation

Even though directly deploying FTL on SK-RM can take
advantage of the short read/write latency of SK-RM, the
bit pattern difference between successive FTL entry updates
could lead to excessive insert and remove operations. Over

time, the latency induced by these insert and remove opera-
tions could degrade the performance of SK-RM-based FTL.
To better illustrate such condition, a motivational example is
given in Figure 2. In Figure 2(a), the data chunk C is updated
twice on the NAND flash memory. Based on the conventional
page allocation policy, pages of each block are allocated
sequentially for accommodating new data writes. Therefore,
the physical location of data chunk C changes from [block 0,
page 2] to [block 0, page 255], and then changes to [block 8,
page 2]. Accordingly, as shown in Figure 2(b), the mapping
entry of data chunk C is also updated. Owing to the 1-bit
difference between entry updates, 7 skyrmions are injected
during the first update. However, those injected skyrmions
are removed immediately during the next update. In other
words, if the number of data bits 1 between entry updates is
different, insert and remove operations are induced. Excessive
insert and remove operations may eventually aggravate the
performance of SK-RM-based FTL. In summary, the major
issue of exploiting SK-RM for a high-performance nonvolatile
FTL lies in how to preserve and reuse injected skyrmions
properly while avoiding additional shift operations.

Blk 0

...

B M

W

H G

A F L E

G

...

...

...

J

C

KC'

...

Blk 1 Blk 2 Blk 8

Page 0

Page 1

Page 2

Page 255

(i)

(ii)

(iii)

00000 00000010

Blk 0, Page 2
(ii)(i) (iii)

Blk 0, Page 255 Blk 8, Page 2

(a) Updating data chunk C with conv. page alloc.

(b) Bit difference after each entry update

00000 11111111 01000 00000010

Insert 7
1 bits

Remove 6
1 bits

...

C''

Fig. 2: Motivational example, which shows the skyrmion
insert and remove operations when the number of 1-bit varies
between successive FTL mapping updates.

III. SK-RM-BASED FLASH TRANSLATION LAYER

A. Overview

To exploit the preservation and reformation characteristics
of skyrmions for enabling high-performance SK-RM-based
FTL, this paper proposes an SK-FTL for minimizing the
bit difference between successive mapping entry updates and
preserving injected skyrmions to compose data pattern of
future data writes. The main difference between the proposed
SK-FTL and previous SK-RM data write strategy is that (1)
SK-FTL first proposes a systematic methodology to exploit
both preservation and reformation characteristics, and (2) SK-
FTL aims to minimize the number of insert and remove
operations simultaneously between mapping entry updates
for further latency reduction. The system architecture of the
proposed SK-FTL is illustrated in Figure 3.

Notably, SK-FTL is designed based on page-based FTL,
and each mapping entry fits into the distance between access
ports on the racetracks. Multiple racetracks are included, and
the vertical shift of skyrmions can only be applied between
two tracks. In other words, shifting skyrmions from racetrack



NAND Flash Storage Devices

Data

Area

SK RM Flash Translation Layer NAND Flash

Controller

Mapping Table

SK RM

Active SK Buffering
Scheme

Vertical Shift
Mechanism

SK Aware Allocator

Copy on Write

DRAM

Fig. 3: Structure of the proposed SK-FTL, in which SK-
RM is used to store mapping entries of FTL and 3 main
components are included to exploit the preservation and
formation characteristics of SK-RM.

N to racetrack N+2, two shift operations are required. Mean-
while, as the bit pattern between entry updates affects the
number of insert and remove operations, SK-FTL minimizes
the number of ‘1’ bits difference by the SK-aware allocator
(see Section III-B) to consider the 1-bit difference between
the originally-stored PBA and to-be-allocated PBA. Then,
the vertical shift mechanism (see Section III-C) is included
to manage vertical shift between racetracks. In the end, the
active SK buffering scheme (see Section III-D) preserves and
reforms injected skyrmions for prolonging the lifetime of
injected skyrmions.

B. SK-Aware Space Allocator

The proposed SK-FTL updates mapping entries by follow-
ing the permutation write strategy. As shown in Figure 4,
during each update, the to-be-updated mapping entry is first
shifted to the overhead region on the racetrack. During the
shifting, skyrmions, which represent data bits 1, are preserved
in the overhead region, while non-skyrmions are removed.
Then, skyrmions are shifted back to compose the data pattern
of the next mapping entry update. In this example, there is
no remove or insert operations because the number of 1-
bit is identical between two successive updates. Nevertheless,
according to Figure 2, the bit difference is common during
mapping updates.

00001 00001

Blk 1, Page 1

00010 00010

Blk 2, Page 2

...

...

... Shift to overhead region

Re permutate

Shift
MOS

Shift
MOS

SkyrmionNon skyrmion

Fig. 4: Mapping entry updates through permutation write,
in which the data pattern of next mapping entry is recomposed
based on injected skyrmions of previous entry.

To minimize the bit difference between each mapping entry
update, the included SK-aware space allocator groups NAND
flash blocks into different lists based on their number of 1
bits in their block addresses. These lists are referred to as
bits-number-based block lists. As shown in Figure 5, block
numbers are converted into binary values at Step (a). This is
because the binary value is the final form of how mapping

entries are stored on SK-RM. Then, based on their number
of 1 bits, blocks are added to each list. For instance, since
Block 3 and Block 5 have 2 1 bits in their binary values of
block addresses, Block 3 and Block 5 are added to list of 2
bits. Then, allocating free NAND flash pages from blocks on
the same list will not change the number of 1 bits for the
block address in mapping entries. In other words, as shown
in Figure 4, through re-permuting existing skyrmions, it will
not induce any insert or remove operations for updating the
block address in mapping entries as there is no bit difference.

(a) Convert block number into binary value

Blk 1 > 00001
Blk 2 > 00010
Blk 4 > 00100
Blk 8 > 01000

(b) Group by the number of 1 bits

Binary

Blk 3 > 00011
Blk 5 > 00101
Blk 6 > 00110
Blk 9 > 01001

Binary

...

...

...

Bits Num based Block Lists

0/1 bit

2 bits

3 bits

Blk 0 Blk 1 Blk 2

...

...

...

Blk 3 Blk 5 Blk 6 ...

Blk 7 Blk 11 Blk 13 ...

...

...

Fig. 5: Bits-number-based block lists, which groups blocks
that have same number of 1 bits in their block address
together.

After minimizing the possibility of 1-bit difference in block
address of mapping entries, the SK-aware space allocator
is proposed to allocate free NAND flash block horizontally
across blocks in the same bits-number-based block list. By
the horizontal allocation fashion shown in Figure 6, the bits
difference between successive entry updates can be further
reduced. For instance, since horizontal allocation ensures the
page number is identical, there are no insert or deletion
operations required while recomposing the data pattern of the
page number in the next mapping entry update.

Blk 0 Blk 1 Blk 2 Blk 8 Blk 16

Allocated InvalidFree

...

F H

M

A B C D

I

E

Allocatable

G

...

...

...

...

J

L

B
lk
Li
st
o
f
0
/1

b
it

Fig. 6: SK-aware space allocator, which allocates NAND
flash pages horizontally across blocks to minimize the 1-bit
difference of page address between mapping entry updates.

C. Vertical Shift Mechanism

On SK-RM, vertically shifting skyrmions onto different
racetracks through access ports has been successfully demon-
strated [5]. However, few previous studies have utilized this
feature for actual use because arbitrarily moving skyrmions
to other racetracks may corrupt the original valid data on the
racetrack. In other words, the main challenge for exploiting
the feature of shifting skyrmions between racetracks is when
and where the skyrmions can move without ruin the original
data stored on the racetrack. The proposed SK-FTL resolves
the above issue by utilizing the valid and invalid information



of mapping entries within FTL as a hit to determine the timing
and regions for shifting skyrmions vertically. The vertical
shifting mechanism can be summarized in Figure 7.

Head Tail

Jshift
... ...

Head Tail... ...

Access port

Head Tail

Head Tail

Access ports

...

......

...

Entry N

Entry 2N

(a) Vertical shift through access ports (b) Permutation write via vertical shift

Fig. 7: Vertical Shift Mechanism, which exploit and manage
shifting skyrmions to other racetrack for either preservation
or data pattern reformation.

As shown in Figure 7(a), the vertical shift is an operation
that allows shifting the skyrmions to adjacent racetracks
through the access ports. Then, based on the vertical shift op-
eration, the included vertical shifting mechanism repurposes
other free or invalid memory regions on adjacent racetracks as
the buffer region of permutation write strategy. For example,
in Figure 7(b), Entry 2N is an unused entry in the mapping
table. Then, when updating the Entry N, SK-FTL uses the
space of Entry 2N as the buffer region to perform permutation
write. In addition, since the memory space used as buffer
region is either free or invalid, excessive skyrmions between
mapping entry updates can be preserved. Alternatively, when
skyrmion injections are required during entry updates, those
preserved skyrmions in the buffer region can be reused.

D. Active SK Buffering Scheme

With the perpendicular shifting mechanism, SK-FTL can
shift skyrmions vertically to invalid or free regions on adjacent
racetracks and repurposes those regions are buffer regions
while reforming the data pattern of next entry updates. More
specifically, the SK-FTL repurposes the free and invalid
entry in the mapping table as the buffer for performing
permutation write and further preserves the extra skyrmions
to avoid repeatedly removing and inserting the skyrmions.
To better manage those to-be-preserved skyrmions, SK-FTL
includes the active SK buffering scheme for preserving and
recomposing skyrmions for future data writes. Figure 8 shows
a working example of the active SK buffering scheme.

As shown in Figure 8, when a mapping entry is being
updated, SK-FTL can use the memory space of the free
and invalid entries on the same racetrack or the adjacent
racetracks through the horizontal or vertical shift operations.
For example, in Figure 8, when Entry 0 is going to be updated,

Entries 1, 4, 7, 10

...

...

...

...

(a) Buffering skyrmions

(b) Reusing skyrmions

Updating entry Invalidated entry

Entries 0, 3, 6, 9 Entries 2, 5, 8, 11

(a) Buffering skyrmions

SkyrmionNon skyrmion

Fig. 8: Active SK Buffering Scheme, in which skyrmions
are preserved or reformed for future data writes.

Entry 1 is chosen as the buffer region for temporally holding
the skyrmions and re-forming the data pattern of updated
mapping entries through the shift operations because Entry
1 is an invalid entry in the mapping table. Similarly, Entry
6 is used as the buffer region for the to-be-updated Entry 3
through the vertical shift operation. On the other hand, since
skyrmions on the memory region of free or invalid entries do
not represent actual data, those previously-injected skyrmions
can be reused by other entries. For instance, in Figure 8,
Entry 8 is an invalid entry and contains 3 previous-injected
skyrmions. When Entry 5 needs skyrmion injections during
entry updates, the skyrmions of Entry 8 can be reused to
form the data pattern of updated Entry 5 without injecting
new skyrmions.

IV. PERFORMANCE EVALUATION

A. Experimental Setup

This section demonstrates the evaluation of the proposed
SK-FTL. To study the capabilities of SK-FTL, the evalu-
ations are conducted by the realistic traces collected from
Microsoft Research Cambridge (MSR) [10]. In addition, a
self-collected trace that collected one-month I/O behavior of
a personal computer is also included. All the comparisons are
implemented in a flash simulator [2], including the FTL on
SK-RM with the naı̈ve write strategy, FTL on SK-RM with
the permutation-write strategy [12], and our proposed SK-
FTL. Above comparisons are denoted as FTL, PW FTL, and
SK-FTL. Please note that the naı̈ve write strategy of SK-RM
refers to remove all previous-injected skyrmions and inject
new skyrmions based on the updated data pattern. The size
of the simulated flash is 64 GB with 16KB pages [11], and
the latency parameters of SK-RM are shown in Table II.
B. Experimental Results

To evaluate the performance of SK-FTL, our experiments
first measure the latency of four basic SK-RM operations
during updating mapping entries of FTL, and the results are
shown in Figures 9-12. In these figures, the x-axis represents
different traces, and the y-axis is the accumulated latency
of each operation in log scale with the nano-second unit
while running different traces. The results show that SK-
FTL can effectively reduce the skyrmion insert and remove
latencies when compare to the other two methods. More
specifically, when compared to PW FTL, SK-FTL can reduce
the insert latency by 62.7% on average. In addition, regarding
the remove latency, SK-FTL can reduce 93.3% on average
when compared to PW FTL. The result of detect and shift
operations are shown in Figure 11 and Figure 12, respectively.
Since the native SK-RM write strategy always removing all
the skyrmions and then re-inserting the skyrmions according
to the new data, there is no need to detect any bits while
adopting the naı̈ve write strategy. Therefore, in Figure 11,
the detect latency of FTL is always zero in every trace. On
the other hand, as the result of the same detect behavior in
both PW FTL and SK-FTL, the detect latency of these two
methods are the same in the result. Last, in Figure 12, the shift
latency of the three compared methods are similar because the
number of shift operations depends on the interport distance.



1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

1.00E+09

File Server Project

Server

WebSQL

Server

Media Server One month

La
te
n
cy

in
Lo
g
S
ca
le
(n
s)

FTL PW FTL SK FTL

Fig. 9: Inject latency comparison.

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

1.00E+09

File Server Project

Server

WebSQL

Server

Media Server One month

La
te
n
cy

in
Lo
g
S
ca
le
(n
s)

FTL PW FTL SK FTL

Fig. 10: Remove latency comparison.

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

1.00E+09

File Server Project

Server

WebSQL

Server

Media Server One month

La
te
n
cy

in
Lo
g
S
ca
le
(n
s)

FTL PW FTL SK FTL

0 0 0 0 0

Fig. 11: Detect latency comparison.

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

1.00E+09

1.00E+10

File Server Project

Server

WebSQL

Server

Media Server One month

La
te
n
cy

in
Lo
g
S
ca
le
(n
s)

FTL PW FTL SK FTL

Fig. 12: Shift latency comparison.

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

1.00E+09

File Server Project

Server

WebSQL

Server

Media Server One month

A
cc
u
m
u
la
te
d
1
B
it
s
D
if
f.
in
Lo
g
sc
a
le FTL PW FTL SK FTL

Fig. 13: Accumulated 1-bit difference.

0

10

20

30

40

50

60

70

80

F
ile

S
e
rv
e
r

P
ro
je
ct
S
e
rv
e
r

W
e
b
S
Q
L
S
e
rv
e
r

M
e
d
ia
S
e
rv
e
r

O
n
e
m
o
n
th

F
ile

S
e
rv
e
r

P
ro
je
ct
S
e
rv
e
r

W
e
b
S
Q
L
S
e
rv
e
r

M
e
d
ia
S
e
rv
e
r

O
n
e
m
o
n
th

Read Write

A
v
e
ra
g
e
La
te
n
cy

(x
1
.0
E
0
6
n
s)

FTL PW FTL SK FTL

Fig. 14: Read/Write Latency of NAND flash.

Meanwhile, to demonstrate the benefit brought by the SK-
aware allocation, the total number of 1 bits difference is also
measured. As shown in Figure 13, SK-FTL can reduce the
difference of 1 bits by 68.7%, compared with the FTL and
PW FTL. On the other hand, the number of 1 bits differences
of FTL and PW FTL are identical for each trace because
their NAND flash page allocation strategies are not tuned
for minimizing 1-bit difference. Furthermore, as FTL is an
auxiliary layer for managing the NAND flash memory, the
access performance of NAND flash memory is an important
consideration. Therefore, the performance of NAND flash
is also measured in terms of the average read and write
latencies. As shown in Figure 14, SK-FTL can achieve similar
performance on NAND flash memory as conventional FTL,
and the differences are only 0.89% and 0.28% on average for
read and write latencies, which are negligible when compared
with the reduction of insert and remove latencies of SK-RM.
Notably, the performance shows in Figure 14 only includes
the latency of regular I/O operations on NAND flash, and the
latency of FTL-related operations is not included.

V. CONCLUSION

To exploit the skyrmion preservation and reformation char-
acteristics of SK-RM, this paper is a pioneer study that
systematically utilizes the characteristics of SK-RM in com-
bination with the mapping information of FTL for achieving
high-performance nonvolatile FTL. The proposed SK-FTL
first introduces the SK-aware space allocator to carefully
minimize the 1-bit difference between mapping updates by
configuring the allocation method of the NAND flash pages.
Then, the vertical shift mechanism is used to repurpose
invalid or free entry space as the buffer region for reforming
skyrmions for the next entry update. Finally, the active SK
buffering scheme is utilized to preserve skyrmions in unused
space and recompose skyrmions for future data writes. Eval-
uation results show that the proposed SK-FTL can reduce
the latencies of skyrmion insert and remove operations by
62.69% and 93.25% on average and induce no extra shift

operation, compared with the page-based FTL on SK-RM
with permutation write strategy enabled.

ACKNOWLEDGMENTS
This work was supported by the Ministry of Science and Tech-

nology, Taiwan under grant no. 109-2222-E-027-007-MY3.

REFERENCES

[1] A. Ban. Flash file system, U.S. 5404485 A, Apr. 1995.
[2] Y.-H. Chang and T.-W. Kuo. A management strategy for the reliability

and performance improvement of mlc-based flash-memory storage
systems. IEEE Transactions on Computers, Mar 2011.

[3] W.-C. Cheng, S.-H. Chen, Y.-H. Chang, K.-H. Chen, J.-J. Chen, T.-
Y. Chen, M.-C. Yang, and W.-K. Shih. Ns-ftl: Alleviating the uneven
bit-level wearing of nvram-based ftl via nand-spin. In 2020 9th Non-
Volatile Memory Systems and Applications Symposium (NVMSA), pages
1–6, 2020.

[4] Y. S. Hsieh, P. C. Huang, P. X. Chen, Y. H. Chang, W. Kang,
M. C. Yang, and W. K. Shih. Shift-limited sort: Optimizing sorting
performance on skyrmion memory-based systems. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems,
39(11):4115–4128, 2020.

[5] W. Kang, X. Chen, D. Zhu, X. Zhang, Y. Zhou, K. Qiu, Y. Zhang, and
W. Zhao. A comparative study on racetrack memories: Domain wall
vs. skyrmion. In 2018 IEEE 7th Non-Volatile Memory Systems and
Applications Symposium (NVMSA), pages 7–12, 2018.

[6] W. Kang, Y. Huang, X. Zhang, Y. Zhou, and W. Zhao. Skyrmion-
electronics: An overview and outlook. Proceedings of the IEEE,
104(10):2040–2061, 2016.

[7] J. K. Kim, H. G. Lee, S. Choi, and K. I. Bahng. A pram and nand flash
hybrid architecture for high-performance embedded storage subsystems.
In Proceedings of the 8th ACM International Conference on Embedded
Software, 2008.

[8] Y.-P. Liang, T.-Y. Chen, Y.-H. Chang, S.-H. Chen, P.-Y. Chen, and W.-
K. Shih. Rethinking last-level-cache write-back strategy for mlc stt-ram
main memory with asymmetric write energy. In 2019 IEEE/ACM Inter-
national Symposium on Low Power Electronics and Design (ISLPED),
pages 1–6, 2019.

[9] D. Liu, T. Wang, Y. Wang, Z. Qin, and Z. Shao. Pcm-ftl: A write-
activity-aware nand flash memory management scheme for pcm-based
embedded systems. In IEEE 32nd Real-Time Systems Symposium, 2011.

[10] D. Narayanan, A. Donnelly, and A. Rowstron. Write off-loading: Prac-
tical power management for enterprise storage. In ACM Transactions
on Storage (TOS), 2008.

[11] Samsung. Samsung v-nand@ONLINE, http://www.samsung.com/
semiconductor/products/flash-storage/v-nand/, 2017.

[12] T. Y. Yang, M. C. Yang, J. Li, and W. Kang. Permutation-write:
Optimizing write performance and energy for skyrmion racetrack
memory. In 2020 57th ACM/IEEE Design Automation Conference
(DAC), pages 1–6, 2020.


