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Abstract—The non-volatile memories such as FeRAM,
PcRAM, and ReRAM afford an innovative approach to the
computing in memory (CIM) architecture, which is promising to
solve the memory wall problem in the traditional Von Neumann
architecture. This paper proposes ReRAM-based CIM architec-
ture, which does multiplication and accumulation in the ReRAM
array with low power consumption and saves the bandwidth of
the storage unit and the processing unit. We combine the CIM
architecture with digital circuits to verify the speaker recognition
function based on the Long Short-Term Memory (LSTM) net-
work. Moreover, We propose a Two-bit Current-Mode Sensing
Amplifier (2b-CSA) as an interface between analog and digital to
improve throughput and energy efficiency. This work is simulated
under the CMOS 180nm process for compatibility with embedded
ReRAM and CMOS logic. The result shows that this work can
achieve a CIM operation energy consumption of 1.6pJ per bit.

Index Terms—ReRAM, Analog Compute, Computing-in-
Memory, Current-mode Sensing Amplifier.

I. INTRODUCTION

Artificial neural networks (ANNs) have achieved substantial

advances in machine-learning problems such as image or

speaker recognition. The most commonly used computation

for ANNs forward inference is the multiply-and-accumulate

(MAC) operation [1]. However, for the data-intensive ANNs

inference, it is challenging to improve the energy efficiency

of accelerators with traditional Von Neumann architecture due

to the memory wall problem. Therefore, embedding MAC

operations into the memory array itself is more potential [2].

As the next generation of memory, ReRAM has the feature of

current accumulation to perform the computation in memory.

Thus the academic has aroused great interest in ReRAM-based

computing-in-memory (CIM) architecture [3].

To increase the integration density of ReRAM, researchers

commonly arrange ReRAM into a crossbar structure. The one-

transistor-one-resistor (1T1R) crossbar integration of resistive

units can be expanded on a large scale. Based on this structure,

the MAC operation can be done by sensing summed currents

in the non-volatile memory array and converting them to

digital data. And the studies on CIM architecture have made

numerous achievements, such as CNN inference [4], binary

DNN inference [5], and neural network training [6].

The main challenge in ReRAM-based hardware design is

the analog-to-digital conversion part. CIM inference engine

in edge computing requires a compact analog-to-digital con-

verter(ADC) design to achieve area and power efficiency [7].

Zhang et al. proposed an embedded HfOx-ReRAM macro

with an adaptive current-mode sensitive amplifier (CSA) in-

stead of ADC [8]. However, they employ ReRAM as storage

without computing in memory. Long et al. proposed a re-

current neural network (RNN) accelerator based on ReRAM

Processing In-Memory (PIM) architecture [9]. Their design

applied ADC/DAC as the input and output interface module

of ReRAM. Compared with ADC, CSA will consume fewer

area and power, thus improving the in-memory computing

performance on-chip.

In this paper, we propose a non-volatile ReRAM-based

computing in-memory architecture. The entire architecture

includes 16 ReRAM-based CIM units with a total storage

capacity of 128Kb and 512 2b-CSAs to collect the summed

current of 512 bit-lines in 16 CIM units. We map a trained

LSTM network [10] to this architecture and complete the

forward inference in a fully hardware implementation to

verify speaker recognition function. In addition, because the

internal ReRAM array generates the partial sum during the

neural network inference, we also add shift-and-add modules,

activation function modules, and an overall control module to

complete the forward inference. The main contributions of this

work can be summarized as follows:

• We analyze the impact on the reading accuracy causing

by the dispersion of the ReRAM device and propose

2b-CSA for sensing two ReRAM cells simultaneously

without theoretical accuracy loss.

• We propose the ReRAM-based CIM architecture for

bit-vector dot-product. Every CIM equips with a row

decoder with extenders for inputs decoding, a normal

column decoder, and 32 2b-CSAs for current sensing.

ReRAM array generates bit-vector matrix multiplication

sum, which is shifted and added subsequently.

• We map a trained LSTM network to the entire hardware

with 16 CIMs, and the hardware evaluation accuracy for

the TIMIT data set is 93.1%, then we complete the layout

design.

The rest of this paper is organized as follows: In Sec-

tion II, we present the basics of ReRAM, CIM, and LSTM
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Figure 1: 1T1R architecture with decoders, drivers and CSAs

acceleration. Section III illustrates the details of our overall

architecture, CIM operation, and 2b-CSA circuits. Section IV

describes the chip layout and gives the simulation results in

comparison with related work. Section V concludes this paper.

II. PRELIMINARY

A. ReRAM device and array architecture

ReRAM is a kind of NVM, and it will not change the

stored data even if the power is off. However, RRAM needs to

go through a high-voltage FORM process before the ReRAM

device can adjust the resistance typically. Therefore, the main

difficulty in the circuit design based on ReRAM is that the

FORM voltage of ReRAM is usually higher than the core

voltage of the CMOS technology node. For example, The

operation voltage of the core device at 28nm node is around

1V. As the FORM voltage of the selected cell higher than

2.5 V, the unselected access transistors in the same active bit-

line (BL) will generate a high leakage current, causing large

voltage drop on the decoder transistor, and the voltage of I/O

transisitor can be as high as 6 V if the VFORM reaches 2.5 V

in the case of 1 k cells in bit-line [11].

Figure 1 shows the ReRAM array architecture with 1T1R

cells. The decoder and driver circuits are usually needed

to transmit the analog voltage value to the corresponding

position in the array. In order to reduce the leakage currents

of BL and SL flowing through the decoder, the typical design

does not set a large number of array columns. So that the

voltage of VFORM , VSET , and VRESET signal through the

IO transistor will not exceed the limit voltage range of the

CMOS technology node.

B. Computing in Non-volatile Memory

The data stored in the NVM crossbar array is an analog

value. According to Ohm’s law (I = VG, where I is the current,

V is the voltage, and G is the conductance), the NVM cells

can multiply the input voltage and the conductance value of

the NVM device, which is an inherent multiplication inside the

NVM array. In addition, Kirchhoff’s current law sums these

contributions along each column line to accumulate.

Figure 2(a) shows the conventional ReRAM topology for

CIM. The usual method is to map the activation value to

Vi(xi)

Vi+1(xi+1)

 

Wij

 

   

Vgate

Vgate

Vread
Vi(xi)

Vi+1(xi+1)

 

Wij

 

   

Vread

(a) conventional array topology (b) low-power array topology

Figure 2: Comparison of ReRAM array topology for CIM

the voltage on BL and map the weight value to 1/R of

the ReRAM cell, and the partial sum is mapped to the

summary current on SL. However, the conventional ReRAM

topology faces two problems, (1) The interface between the

ReRAM array and the digital processor requires digital-to-

analog and analog-to-digital converters, increasing the chip

area and power consumption; (2) All access transistors are

simultaneously turned on by VDD on word-lines (WLs) to

perform a CIM operation, resulting in large sneak currents and

energy wastes [12]. As Figure 2(b) shows, the activation value

input is mapped to the logic 0/1 applying on WL. Therefore,

the DAC can be omitted from the interface of the processor

to the NVM array. Furthermore, during working, transistors

whose gate voltage is applied by logic 0 will turn off, reducing

leakage energy consumption [12].

C. ANN and LSTM acceleration in NVM

The CIM-NVM architecture, due to its efficient analog

computation, is very suitable for doing matrix multiplication

(MM). As we all know, convolution and MM are the primary

operations in ANNs that have obtained great success in deep

learning. Moreover, the convolution can be converted to MM

by input images unfolding and convolution kernel reshaping.

Therefore, the CIM-NVM architecture is capable of the multi-

layer perceptron (MLP) and LSTM network based on MMs

and suitable for the convolutional neural network (CNN) based

on convolution.

There were a lot of in-memory acceleration studies on

CNN and MLP [13], [14]. However, compared with CNN

and MLP, LSTM needs more memory acceleration because

LSTM occupies more memory storage. And the performance

of LSTM accelerators is rigorously restricted by memory

bandwidth, so conventional ANN acceleration architectures

exhibit poor performance for LSTM inference [15]. Therefore,

this work is mainly oriented to accelerate the inference of

LSTM networks to satisfy the low power requirements for

edge devices.

III. RERAM BASED COMPUTING-IN-MEMORY CIRCUIT

ARCHITECTURE

In this paper, we propose a nonvolatile CIM ReRAM macro

for efficiently LSTM inference. We use a low-power ReRAM

array topology and design a corresponding decoder for the

CIM process. In addition, we propose a 2b-CSA with a
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Figure 3: (a) Overall architechture with 16 CIMs. (b) CIM architechture with embedded ReRAM 1T1R array

symmetrical structure to sense the current on the bit-line of

the ReRAM array.

A. Overall ReRAM-based architecture

As shown in Figure 3(a), the top-level architecture includes

controller, buffers, tanh modules, and CIMs. The controller

provides different working modes, such as FORM ReRAM

array, weight loading, and CIM mode, sending different com-

mands to the blue dashed box in Figure 3(a). Buffers and

the internal storage of CIMs constitute a memory hierarchy.

CIMs are both data storage and arithmetic unit. In this CIMs

array, the data flow would be as follows: (1) first in the weight

loading mode, the weights are fed from the input buffer to

the left column of the CIMs array, and then move from left

to right, and finally, all weights will be installed in different

CIMs respectively; (2) next in the CIM mode, the input values

of each LSTM recurrent cycle are fed from the input buffer to

the left column of the CIMs array, similarly, moving from left

to right so that each CIM will get some partial sum results; (3)

the partial sum results will be moved up from the bottom row

of the array, performed tanh activation which is frequently

applied in LSTM, and conveyed to the output buffer after

accumulation; (4) a LSTM recurrent cycle is consist of step(2)

and step(3), the controller sends commands to repeat LSTM

recurrent cycle until finishing LSTM inference. To deploy

the LSTM network in our architecture, we quantify weight

and activation and use Taylor fitting for the tanh function. In

addition, the hardware evaluation accuracy for the TIMIT data

set is 93.1%, whose accuracy degradation is 5.6% lower than

ideal floating-point inference.

Figure 3(b) depicts the specific structure of a CIM. In

the weight loading mode, the embedded ReRAM array will

store external weight data by bit, and in the CIM mode, the

input data is sent to the corresponding rows through WL

modules. Besides, we design CIMs hierarchically. As shown

in Figure 3(b), inside the red dashed box are analog circuits

containing embedded ReRAM arrays and three-terminal(WL,

SL, BL) read-write modules. Each column (bit-line) of the

array is equipped with a 2b-CSA, generating 2-bit output

data every period. In addition, 2b-CSA replaces the analog-

to-digital converter as an interface between analog and digital.

Moreover, Our decoders and shift-and-add digital circuits are

in the blue dashed box. We have computed the bit-wise partial

sum in the analog part, and it needs to be shifted and added

to generate the final output gate value.

B. ReRAM array with Decoders and CIM operation

The top-level architecture contains 16 CIMs with a total

storage capacity of 128Kb. Considering that LSTM is a

weight-intensive neural network, we set the capacity of a

single CIM to 8Kb to store the weights and bias inside CIM.

On the other hand, because the FORM voltage of the ReRAM

device is applied on bit-lines, which is higher than Vgate

applied on the word-line. Therefore, in a single CIM, the

number of bit-line is 32, and the number of word-line is

256. Accordingly, the I/O transistor’s driving voltage will not

exceed the CMOS node voltage limitation when the FORM

operation works.

Like Static Random-Access Memory (SRAM), our ReRAM

array also needs row and column decoders to reduce bus

bandwidth and metal layer routing pressure. A 5-32 decoder

is used together on the bit-line and the source-line, which has

the additional function of turning on all output channels simul-

taneously when CIM mode works. However, the innovation

in this work lies in the word-line decoder design. Figure 4

illustrates that our word-line decoder is composed of a basic

7-128 decoder and 128 extenders. The extenders controlled by

the signal in the below part in Figure 4, expand the decoder’s

128 outputs to 256 lines connecting to the ReRAM analog

array. Particularly, when the Mode signal is 0, the Sel signal is

equivalent to the lowest address signal. Thus the 7-bit address

of the 7-128 decoder combined with the Sel signal constitutes

an 8-bit address signal. The decoder selects a specific row

in the ReRAM array according to the provided address. The

mode talked above will be used to perform FORM, RESET,

and SET operations on ReRAM. We load all weights by

traversing the entire array. On the contrary, when the Mode
signal is 1, our decoder works in the CIM mode. At this
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TABLE I: Truth table of extender

Din<1> Din<0> ROW 2i ROW 2i+1

0 0 off off
0 1 off on
1 0 on off
1 1 on on

time, assuming that the decoder output i enables extender i,
the on or off of ROW 2i and ROW 2i+1 will be determined

by Din<1:0> signal according to Table I. Note that our 8-

256 decoder with extenders in this work has more operating

modes flexibly adapted to different CIM operations than the

basic 8-256 decoder. In general, a ReRAM array can complete

a (1×2) bit-vector matrix multiply a (2×32) bit-vector matrix,

producing 32 2-bit results. Next, we will describe the CIM

operation in the two-row working mode.

In Figure 5, we assume that the weight and input data are

quantized in 4-bit, then 2×4 ReRAM cells are an operation

unit that stores two 4-bit weights, and the input data is divided

into four cycles, multiplying the weights by each bit, and then

accumulate the product value. Take (3,6) dot product (10,2)

as an example and get the result(3*10 + 6*2 = 42), as shown

in Figure 5(a). However, in CIM architecture, we get the final

dot-product result through(20*10 + 21*(10+2) + 22*2 + 23*0)

in Figure 5(c). Because the value stored in the ReRAM array

does not assign the significance of the bit position, so the

array’s output should be shifted and added to get final results,

as shwon in Figure 5(b). In particular, we exploit 2b-CSAs in

the CIM architecture, so the output of a 2b-CSA is represented

01 10

10 10 011

00 11

0 0 1 0

0

00 21

00 10

00 00

CIM Operation

Shift Left by 3

Shift Left by 2

Shift Left by 1

+

+

+ 101010

(b) CIM-based dot-product

1 0 1 0
1 0 2 0

0 0 1 0
0 0 0 0+

1 0 1 0 1 0
carry

(c) shift and add 

01 10

10 10

00 11

00 21

00 10

00 00

011

0 0 1 0

0

CIM Operation

Shift Left by 3

Shift Left by 2

Shift Left by 1

+

+

+ 101010

(b) CIM-based dot-product

1 0 1 0
1 0 2 0

0 0 1
0 0 0 0+

1 0 1 0 1 0

1 01 0 0 01 0 1
00000 222 0
111 000
00000
111 0 10  0 

carry
(c) shift and add

6
3

2
10 = 42

(a) dot-product

Figure 5: A computation example based on CIM operation

Probability

IreadI3HRS

IreadI2HRS I2LRS

IreadIHRS ILRS

ILRS+HRS

I2HRS+LRS IHRS+2LRS I3LRS

Error 
occurs

1 cell

2 cells

3 cells

Figure 6: Read current analysis with ReRAM device disper-

sion

by two-bit data. Therefore, the computation process exists the

intermediate number 2, and it will be carried to a higher bit

in the shift-add operation.

C. Two-bit Current-mode Sensing Amplifier

In this subsection, we explain the reasons for using 2b-

CSAs in CIM architecture and the circuit analysis of 2b-CSA.

Traditional CSAs are used to amplify the bit-line swing in

order to decrease access time in modern SRAM and some

non-volatile memories (NVMs) [16]. In order to improve the

reliability of ReRAM macro and reduce read errors, ReRAM

usually uses a current adaptive mode sensitive amplifier(CSA),

which also achieves a faster read speed and robustness to

noise [8]. However, the traditional CSA is equivalent to a

binary quantization of the read current, while in the CIM

architecture, a higher precision quantization is required for

partial sum accumulation. In this paper, we propose a 2b-

CSA in place of traditional CSA. When the word-line decoder

turns on two rows simultaneously, a 2b-CSA will receive

a combined current of two ReRAM cells. Moreover, two-

bit data can express three current situations, IHRS + IHRS ,

IHRS + ILRS , ILRS + ILRS , where IHRS is the current of

high resistance state and ILRS is the current of low resistance

state.



  

 

 

 

 

 

 

  

   

Figure 7: Sensing circuit of 2b-CSA

However, read errors will occur when more selected

ReRAM cells generate summed current for the CSA, which

is caused by the inevitable dispersion of ReRAM devices.

We take the embedded ReRAM test performance in [17] for

analysis. The read current fluctuation of low resistance state

device at 72K ohms is 22.9%, and the read current fluctuation

of high resistance state device at 530K ohm will reach 43.7%
[17]. As shown in Figure 6, based on the current fluctuations of

the above test results, we have performed read current analysis

on selecting 1, 2, and 3 ReRAM cells, respectively. When

more than two cells are turned on, confusion occurs between

two states of read current, which leads to errors in the read

results. In the situation where three ReRAM cells are turned

on in Figure 6, IHRS+2LRS and I3LRS may have overlapping

areas, causing the disturbance of sensing currents.

Figure 7 shows the sensing circuits of 2b-CSA, which

is modified from the conventional CSA in [8]. Compared

with the conventional CSA, 2b-CSA has two current paths,

Iref L and Iref H respectively, and an additional comparator

to generate one more bit output. In Figure 7, by adjusting

Vref L, Iref L is between I2HRS and ILRS+HRS , and Iref H

is between ILRS+HRS and I2LRS by adjusting Vref H so that

the three current states can be separated without read errors.

Besides, we coded the output of 2b-CSA for linking with the

digital part. As shown in Table II, Vout(1,0) is redundant, and

Vout(1,1) represents the encoded data 2. We use fewer MOS

transistors to optimize 2b-CSA to reduce the area and improve

energy efficiency, as discussed in the next section.

TABLE II: 2b-CSA output coding scheme

Vout H Vout L Encoded data

0 0 0
0 1 1
1 0 invalid
1 1 2
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Figure 8: Layout design and area comparison between 2b-CSA

with traditional CSA

IV. LAYOUT AND SIMULATION RESULTS

This section will discuss the layout scheme of this work

and analyze the 2b-CSA layout area and power consumption.

Finally, we simulate and analyze the CIM operation.

A. Layout scheme

We use the 180nm CMOS PDK for the entire design and

systematize the CIM module as an IP to adapt to the IC back-

end design flow. We first complete the analog layout in the

CIM module, so the analog IP area can be calculated, then

mark the port coordinates of the analog IP, which is necessary

while routing. Next, we place analog IPs in the entire layout,

and finally finish the IC back-end design flow. Figure 8(a)

shows that the entire chip layout contains 16 ReRAM-based

CIM IPs.

B. 2b-CSA area and power consumption analysis

Figure 8(b) shows an 8Kb capacity ReRAM CIM analog

layout, which occupies an area of 0.2mm2. In the 2b-CSAs

module, there are 32 2b-CSAs respectively connected to the 32

bit-lines of the ReRAM array. In order to optimize the layout,

we divided the 256 × 32 elongated array into eight 32 × 32
sub-arrays without breaking the logic topology.

Figure 8(c) shows the layout of 2b-CSA, and Figure 8(d)

shows the layout of one-bit CSA referred to [8]. Comparing the

two areas, 2b-CSA’s area is 21% larger due to an additional

comparator and some auxiliary transistors not in traditional

CSA. However, assume the following situation: if the 1b-CSA

is used for the CIM process, two different reference voltages

need to be set for the CSA in the two periods obtaining two

bits of output, respectively. Instead, the 2b-CSA in this work

should be set two different reference voltages in the same

period, thereby generating two-bit data in one period. The 2b-

CSA only consumes a small extra amount of hardware cost,

which significantly reduces the CIM latency. In other words,

2b-CSA doubles the throughput rate compared with 1b-CSA.

Figure 9 shows the simulation results of analog CIM IP.

During the first CIM cycle, we select two low-resistance-

state ReRAM devices through the decoder, which means that
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(1,1) dot product (1,1), and simulation result is (1,1), which

is encoded as the number 2 for further process. During the

second CIM cycle, we modify the address of the decoder so

that two high-resistance-state ReRAM devices are selected,

which means that (1,1) dot product (0,0), the result of the

simulation is (0,0). In addition, the simulation waveform

indicates that the two outputs access at different times because

of the distinct reference voltages of the two comparators in the

2b-CSA. The low bit output access time is 9.5ns, and the high

bit output access time is 15ns. By contrast, the access time of

traditional 1b-CSA in [8] is 50ns. Therefore our work’s access

time is reduced by 70%. Moreover, 2b-CSA can double data

throughput due to higher precision sensing during the MAC

period and reduce the operation energy per bit by 45% with

a minor increase in power consumption and area, as shown in

Figure 10.

V. CONCLUSION

We propose a ReRAM-based CIM architecture, including

the decoder with extenders and 2b-CSA. We consider the

dispersion of ReRAM devices and realize the bit-vector matrix

multiplication in the two-row mode. Compared with 1b-CSA,

2b-CSA in this work achieves doubled throughput, dramati-

cally reduces operating energy consumption per bit and access

time with a minor increase in power consumption and area. In

the future, we plan to apply the fault-tolerant solution for CIM

operation of more selected ReRAM cells with higher energy

efficiency.
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