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Abstract—Compute-in-memory (CIM) has been proposed to 
accelerate the convolution neural network (CNN) computation by 
implementing parallel multiply and accumulation in analog 
domain. However, the subsequent processing is still preferred to 
be performed in digital domain. This makes the analog to digital 
converter (ADC) critical in CIM architectures. One drawback is 
the ADC error introduced by process variation. While research 
efforts are being made to improve ADC design to reduce the offset, 
we find that the accuracy loss introduced by the ADC error could 
be recovered by model weight finetune. In addition to compensate 
ADC offset, on-chip weight finetune could be leveraged to provide 
additional protection for adversarial attack that aims to fool the 
inference engine with manipulated input samples. Our evaluation 
results show that by adapting the model weights to the specific 
ADC offset pattern to each chip, the transferability of the 
adversarial attack is suppressed. For a chip being attacked by the 
C&W method, the classification for CIFAR-10 dataset will drop 
to almost 0%. However, when applying the similarly generated 
adversarial examples to other chips, the accuracy could still 
maintain more than 62% and 85% accuracy for VGG-8 and 
DenseNet-40, respectively.  

Keywords—Deep neural network, hardware accelerator, in-
memory computing, adversarial attack and defense 

I. INTRODUCTION 

Though deep neural networks (DNNs) have yielded 
outstanding results in a variety of applications, including speech 
recognition, image classification, and natural language 
processing [1], there is a growing concern regarding adversarial 
attack which aims to fool the model with manipulated input 
samples (e.g. adding with noises [2]). The prior works on 
adversarial attack and defense mostly were performed from the 
software’s perspective [3], there are rarely any discussions from 
the hardware’s perspective. In this work, we will explore the 
adversarial attack and defense on the actual inference chip based 
on the compute-in-memory accelerator, which is becoming 
attractive for power-constrained edge intelligence platform [4].  

As DNNs are generally data and compute intensive, frequent 
data movements between logic and memory units limit the 
energy efficiency on traditional Von Neumann architecture. In 
recent years, there are increasingly efforts on developing 
specific hardware accelerators to run large-scale DNN models 
from the cloud to the edge. For example, systolic architecture 
such as TPU [5] employs many digital multiply and accumulate 
(MAC) engines close to a large global buffer (i.e., SRAM) to 
reduce the cost of data movement. As a more aggressive 
approach, compute-in-memory (CIM) architecture [4] merges 
the computation directly into the memory sub-arrays that ideally 

addresses the memory-wall problem. The weights of a DNN 
model could be mapped as the conductance of the memory cells 
in the sub-array, while the input vector is loaded in parallel as 
the voltage to the rows, then the multiplication is done in analog 
fashion, and the current summation along columns represents 
weighted sum. In principle, CIM could be implemented by 
different device technologies. SRAM with modified bit-cell and 
array periphery could enable parallel access as demonstrated in 
recent silicon prototype chips [6]. Emerging non-volatile 
memory (eNVM) technologies also provide promising solutions 
due to a smaller cell size and potential of multi-bit per cell, 
yielding a higher integration density at the same technology 
node [7]. Besides, because of the non-volatile nature and near-
zero leakage, the eNVM-based CIM is more attractive to edge 
devices. No matter which kind of memory technologies is used, 
ADC is commonly essential as an important part of periphery 
circuitry to convert the analog partial sum back to digital signal 
for further processing. In other words, CIM is essentially mixed-
signal compute, thus the variations are unavoidable. As reported 
in prior work [8], inference accuracy measured in CIM 
prototypes generally is degraded from the software baseline. The 
primary variation sources include the cell-to-cell variation for 
eNVMs and the intrinsic ADC offset. Cell-to-cell variation 
could be minimized by iterative write-verify technique with 
tolerable overhead for inference engine [9]. A more critical 
challenge is the intrinsic ADC offset introduced by the 
manufacturing process variation. As a result, the ADC offset 
may noticeably degrade the inference accuracy and cause 
different chip instances having different inference results even 
for the same input. It is noted that when ADC offset introduces 
quantization error because of the process variation, these offset 
patterns are static once the chip is fabricated.  

As mentioned earlier, it has been suggested that DNN is 
under the threat of adversarial examples, which could fool the 
network easily while will not affect human’s decision. In 
general, adversarial attacks could be categorized into white-box 
attack and black-box attack based on the information of target 
model exposed to the adversary. For the white-box attack 
[10,11], the adversary has full access to the DNN model 
architecture and weights. Whereas, only external access to the 
network (e.g., input and output) could be used for the black-box 
attacks [12,13]. The white-box attack can often achieve higher 
attack success rates compared to the black-box attack [10]. 
While the white-box attack will cause more serious problem, it 
is not easy for the adversary to get the access to a private model 
in cloud. However, for the edge device, it is physically 
accessible by anyone and thus could leak the model information 
at high risk. Although defense methods have been proposed for 



the white-box attack, the extra algorithmic calculation will 
introduce speed and power overhead. This is undesired for the 
edge device which has limited power budget and demands real-
time response.  

In this work, we leverage the ADC offset pattern (which is 
believed to be detrimental to the inference accuracy) but 
finetune the model weights to take its advantage against the 
adversarial attack on the CIM accelerator. In our evaluation, we 
find that the accuracy drop could be compensated by finetuning 
DNN parameters that adapt to ADC offset. This finetune, while 
recovering the inference accuracy, makes the DNN parameters 
slightly different from chip to chip, which brings us a byproduct: 
the chip will be robust to the adversarial examples generated by 
attacking other chips or software baseline. Explicitly, even if the 
adversary attacks one chip instance by manipulating the 
adversarial input, he/she could not use the same adversarial 
input to attack all the other chip instances due to the uniqueness 
of the DNN model for each chip. 

This paper is organized as follows. Section II introduce the 
principle of CIM scheme, and backgrounds of adversarial attack 
and defense. Section III presents our methodology including 
ADC offset modeling and hybrid on-chip/off-chip finetune 
procedure. Section IV shows our evaluation setup and 
evaluation results of the proposed defense method to the white-
box attack. Section V concludes the paper.  

II. BACKGROUND 

A. Pricinple of CIM 

Convolutional neural network (CNN) is a major class of 
DNNs. Convolution is an important mathematical operation 
widely used in image processing which extracts the features of 
images by filters. The inference operation of convolution is 
essentially the vector-matrix multiplication (VMM). 
Sometimes, the depth of the input channel and output channel 
could be very large that make it hard to fit weights of one layer 
into a single memory array considering slow access and 
excessive energy consumption. Array partitioning [14] can be 
introduced to parallelize the computation into multiple sub-
arrays. To maximize the input data reuse, a novel mapping 
method was proposed in [15]. In this method, the weights at 
different spatial location of each kernel correspond to different 
sub-kernels. These sub-kernels are mapped into different 
subarrays. Because of the window sliding manner of 
convolution, sub-kernels of each position will see the input to 
their neighbor at the window sliding direction. In this case, by 
passing the used input vectors in the same direction as the kernel 
“slides over” the input tensor, the input vectors can be reused 
among the subarrays efficiently. 

The crossbar nature of memory array is a natural substrate 
for implementing VMM in a highly parallel manner. As shown 
in Fig. 1, the crossbar array consists of perpendicular rows and 
columns with the memory cell located at each cross-point. 
Weights in the filters are mapped as the content of the cells. The 
VMM operation is performed as follows: read voltages 
representing the input feature map are applied to all the rows so 
that the read voltages are multiplied by the memory cells at each 
cross-point. The current through each device is summed up 
along columns. Different columns represent filters for different 

output channels, who should see the same input thus all the 
columns work at the same time in parallel. Typically, ADCs are 
needed at the end of the column to convert the analog current to 
the digital output so that the subsequent processing such as 
activation and pooling could be performed in the digital domain. 
In principle, VMM could be done in fully parallel fashion if 
asserting all the rows and all the columns simultaneously. In 
practice, multiple rows/columns could be partially turned on due 
to the sensing resolution of ADCs or the mismatch of column 
pitch to the peripheral circuitry’s dimension. 

B. Adversarial attack 

While AI applications become more prevailing in our daily 
life, their security vulnerability becomes a serious concern. On 
one side, the DNN model becomes a valuable asset since it may 
bring financial profit. The model stealing will ease the life of 
adversary to get a well-trained model or private training dataset 
information. On the other side, the DNN model itself could be 
adversarial attacked, poison attacked, etc., thereby being 
hampered from the intended usage.  

Poisoning attack is an attack mechanism that happens 
during the training of the machine learning model. Generally, it 
is done by injecting “bad” data into the training dataset so that 
the model achieves good performance during training but 
becomes more fragile during inference [16]. Software 
techniques [17] are also proposed to defend model from the 
poisoning attack to some extent. 

The adversarial attack has been widely studied in the 
software domain, especially on DNN-based classification tasks. 
Adversarial examples, which could be defined as “inputs 
formed by applying small but intentionally worst-case 
perturbations to examples from the dataset, such that the 
perturbed input results in the model outputting an incorrect 
answer with high confidence” [2], could hurt the functionality 
of DNN models while cause no uncertainty on human’s 
decision. In physical worlds, camera noise, stick on the target 
object, etc. may lead to adversarial examples causing safety-
critical situations like self-driving car. In general, the 
adversarial attacks could be divided into two categories, which 
are white-box attack and black-box attack, according to the 
exposure level of network information to the adversary.  

1) White box attack 
For white box attack, the attackers are supposed to have the 

access to the network structure and parameters, thus make it easy 
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Fig. 1 The crossbar array for CIM architecture with SRAM or 
eNVM.  



to generate adversarial examples by utilizing gradient [2], 
optimization [11], etc.  

2) Black box Attacks 
In the black-box attack, the adversary has no access to the 

model parameters. What he/she could only do is to feed the input 
to the network and observe the output from the network. So, in 
principle, black-box try to “extract” network information from 
the input-output pairs. A typical method used by black-box 
attack is to train a new model using the new dataset generated 
from the victim model, which is called substitute model. The 
adversary has full access to the substitute model and thus could 
apply the white-box attack on it [18].   

C. Adversarial defense 

In order to protect the integrity of DNN models, different 
countermeasures have been proposed against adversarial 
examples. Since most white-box attacks strongly depend on the 
gradient to generate adversarial examples, one straight way is to 
make gradient inaccessible. For example, in [19,20], some non-
smooth or non-differentiable functions are added to preprocess 
the inputs so that it will not cause problem when calculating 
weights’ gradient during training but cut the gradient to the 
input. As mentioned in [2], it claimed that the adversarial 
examples exist since the data space explored by the network is 
limited. Thus, a simple but efficient way to improve the 
robustness is to retrain the network with adversarial examples 
included with correct labels, which is called adversarial training. 
Since the adversarial examples are generated by adding some 
noise to move the input to some “untouched” region, one could 
force it back by input preprocessing such as de-noise [21] and 
compression [22]. In addition, since the attack is normally 
applied on a certain model, some randomness can be introduced 
into the network parameters so that the adversary could not 
predict which exact set of parameters of the model will be used 
for classification [23]. 

In this work, instead of trying to defend against adversarial 
examples of a certain model in software, we aim to reduce the 
transferability of the adversarial examples among actual chips. 
It works like the aforementioned software defense method of 
introducing randomness into the network parameters. For CIM 
architecture that employs ADCs, there are intrinsic process 
variations that will introduce quantization error. As shown in 
previous prototype chip measurement results, even with 
precisely designed ADCs, the accuracy will be low if the ADCs 
all share the same references [24]. To achieve high accuracy, the 
references of each ADC need to be adjusted independently. This 
requirement for ADC reference adjustment and independent 
reference for each ADC brings additional hardware overhead. 
Alternatively, we could adjust the weights with several retrain 
epoch, namely “finetune” process. When the model is adapted 
to the ADC offset pattern, the inference accuracy could be 
recovered. The overhead of model finetune in software is much 
less than the implementation of adjustable ADC references on-
chip. Now we could take advantages of the model finetune to 
reduce the transferability of the adversarial examples from 
software baseline to actual chips, and from one chip to another.  

III. METHODOLOGY 

A. ADC offset modeling 

As aforementioned, ADC plays an important role to support 
mixed-signal processing and has a significant impact on the 
inference accuracy. As reported in prior CIM design, ADC 
quantization will lead to a degraded accuracy performance [8]. 
There are mainly two causes: partial sum quantization loss and 
ADC offset. The resolution of ADC is determined by the partial 
sum precision required from the sub-array, which is then 
affected by the number of rows that are turned on 
simultaneously and the memory cell precision. When a large 
weight matrix is partitioned into several sub-arrays, partial sums 
are obtained from multiple sub-arrays and then accumulated. 
Considering huge hardware overhead introduced by ADCs, The 
resolution of ADC is usually less than full precision of the partial 
sum, causing quantization loss. The quantization loss of partial 
sums will be also gathered while accumulating partial sums, 
which leads to more accuracy loss.  The impact of quantization 
loss could be relieved by sacrificing hardware performance (e.g. 
turn on less number of rows simultaneously) or reducing 
required input/weight precision (e.g. network compression). On 
the other hand, ADC offset caused by process variation is a more 
critical issue. Unlike cell conductance variation which could be 
manually tightened by aggressive write-verify [9], ADC offset 
for a given circuit topology is purely defined by manufacturing 
process variation. The intrinsic ADC offset makes the partial 
sum read-out from one memory sub-array different from the 
correct value after quantization. Despite offset could be 
compensated by advanced offset cancellation techniques but 
with significant area overhead [25], the tight column pitch of 
CIM subarrays limits using advanced ADCs in order to preserve 
the parallelism of the computation.  

The popular ADC topologies in prior CIM works are Flash-
ADC and successive-approximation-register (SAR)-ADC due 
to their simplicity and suitability. Flash-ADC is made of 
cascading comparators. For an N-bit converter, the circuit 
employs 2ே െ 1  comparators. After comparison, the 
thermometer code is then encoded to the binary code. 
Oppositely, SAR-ADC only hires a single comparator but needs 
several iterative cycles to finish bit-by-bit comparison based on 
binary search algorithm. Both ADC designs are investigated to 
evaluate our proposed adversarial defense scheme. In both 
traditional memory and CIM designs, sense amplifier (SA) is 
typically employed as comparator as it can achieve high speed 
at low power consumption. In our evaluation, we use a simple 
current-mode SA design as shown in Fig. 2 (a), which  is based 
on the classic cross-coupled latch structure (P1-P2, N1-N2). 
This SA operates in 2 phases: precharge & sensing. During the 
precharge phase, the PRE signal goes low and the bit-lines are 
precharged to VDD. During the sensing phase, the PRE and 
SAEN signals are both high which activates the cross-coupled 
structure to pull the outputs to the appropriate full logic level. In 
CIM design, bitline current becomes smaller as load resistance 
is larger, corresponding to smaller partial sum value.  

As a case study, we build a 5-bit ADC with such SA design 
to explore the offset impact on ADC outputs. Fig. 2 (b) shows 
the relationship between ADC pass rate and partial sum value 
according to the 1,000 Monte Carlo simulation runs with TSMC 



40nm PDK which offers eNVM process [26]. Here the sense 
pass rate is defined as the probability to sense correctly between 
the bitline current (partial sum) and its nearest reference current 
(Iref). As shown in the plot, the sense pass rate decreases with 
increasing partial sum value (namely increasing bitline current). 
This observation was also reported in the silicon data [7] and 
could be explained as follows: the absolute sensing voltage 
difference is determined by bitline current and reference current. 
When the bitline current becomes larger as partial sum 
increases, the sensing voltage variation caused by ADC offset 
(especially N3-N4) tends to dominate, thus the output is more 
decided by the intrinsic SA variation. Another reason is that 
column current is inversely proportional to bitline resistance. 
This property leads to smaller ADC step size for higher ADC 
level (partial sum), in which the variation causes higher error 
rate. We also find that the pass rate slightly increases as 
transistor W/L ratio increases.  

As shown in Fig. 3 (a), the pass rate of SA is converted as 
the cumulative probability of Iref being smaller than the Psum, 
corresponding to the green shade area. Assuming the Iref 
distribution follows the Gaussian function, we regard ADC 
offset as the distance between shifted Iref and its ideal value and 
the sigma of Iref could be back-calculated. As abovementioned, 
process variation is caused by manufacturing, thus the Iref shift 
is a static variation over time. From the DNN model’s 
standpoint, the Iref shift could be regarded as partial sum 
quantization bias. For 5-bit Flash-ADC, since each SA performs 
the comparison at its certain reference level (31 different levels), 
each SA has different shift value. Oppositely, SAR-ADC only 
employs the same SA during the entire comparison, thus the Iref 
should be shifted to the same direction for each reference level. 
Based on the observation that the sigma over mu ratio of the shift 
distribution is increased with Iref (Fig. 3(b)), we scale up the 
absolute shift value (normalized to Iref) by the ratio. For Flash-
ADC, as random shifts from different SA are independent, offset 
compensation is possible. However, the mechanism of SAR-
ADC determines that offset of different levels shifts towards one 
direction. As a result, while sensing the same partial sum, SAR-
ADC has bigger offset than Flash-ADC as shown in Fig.4. Fig. 
4 (a) (b) shows the output distribution with offset for Flash-ADC 
while Fig. 4 (c) (d) shows the output distribution for SAR-ADC. 
From the plot, we can also observe that ADC with smaller 
transistor size (e.g. W/L) could induce more offset, resulting in 
lower sense pass rate. As we utilize the process variations in this 
work, SAR-ADC with larger variation is a better choice. 

B. Procedure of weights finetune  

We now discuss the on-chip/off-chip hybrid finetune 
procedure to mitigate adversarial attack from the hardware 
standpoint. During the retraining, the feedforward propagation 
(inference) is first performed on-chip, and then the 
backpropagation and weight update are done off-chip by 
software. The detailed process is as follows: we will run the 
inference on a specific chip that captures its specific ADC offset 
pattern, then the prediction of the inference will be compared 
with the ideal label for the loss function; after obtaining the 
estimated loss, weights are updated through backpropagation in 
software; finally, the memory cells will be reprogramed to the 
new weights possibly with write-verify. In our evaluation, the 
partial sum will sample the ADC offset from the estimated 
distribution as in Fig. 3(a), and the distorted partial sum will be 
used as output feature map and saved for error and gradient 
calculation. The backpropagation and weight update are all 
directly use floating-point calculation as done in software.  

IV. EVALUTION RESULTS 

We evaluate the proposed hybrid finetune defense method 
with VGG-8 and DenseNet-40 networks for CIFAR-10 dataset. 
The precision setting is 8-bit activation and 2-bit weight for 
VGG-8, and 8-bit activation and 8-bit weight for DenseNet-40. 
The software baseline accuracy is ~92% for both networks. For 
the weight finetune process, the batch size of retrain is 200, 
which means there are 250 iterations to finish the finetune in one 

 
Fig. 4 Simulated ADC output with offset sampled from the Iref 
distribution 

5 10 15 20 25 30

0

10

20

30

 25%~75%

 Range within 1.5IQR

 Median Line

 Mean

 Outliers

Ideal ADC Output

A
c

u
ta

l A
D

C
 O

u
tp

u
t 

w
it

h
 O

ff
s

et

SAR ADC
W/L = 10

5 10 15 20 25 30

0

10

20

30

 25%~75%
 Range within 1.5IQR
 Median Line
 Mean
 OutliersA

c
tu

al
 A

D
C

 O
u

tp
u

t 
w

it
h

 O
ff

s
et

Ideal ADC Output

SAR ADC
W/L = 8

5 10 15 20 25 30

0

10

20

30

 25%~75%

 Range within 1.5IQR

 Median Line

 Mean

 OutliersA
c

tu
al

 A
D

C
 O

u
tp

u
t 

w
it

h
 O

ff
s

et

Ideal ADC Output

Flash ADC
W/L = 10

5 10 15 20 25 30

0

10

20

30

A
c

tu
al

 A
D

C
 O

u
tp

u
t 

w
it

h
 O

ff
s

et

 25%~75%

 Range within 1.5IQR

 Median Line

 Mean

 Outliers

Flash ADC
W/L = 8

Ideal ADC Output(a) (b)

(c) (d)

0 5 10 15 20 25 30 35

0.0

0.2

0.4

0.6

s
ig

m
a

/m
u

 f
o

r 
Ir

e
f 

S
h

if
t 

D
is

tr
ib

u
ti

o
n

Normalized Reference Current(mu)

 Sigma/mu for W/L = 10
 Sigma/mu for W/L = 9
 Sigma/mu for W/L = 8

(a)
153 4 5 6 7 8 9 10 11 12 13 14

Integration of 
this region will 
be pass rate of 

the SA

   Iref shift distribution of ref = 5.5
   Iref shift distribution of ref = 10.5

REF = 5.5 Psum = 6

REF = 10.5 Psum = 11

Partial Sum (b)  
Fig. 3 (a) Sense pass rate to Iref offset conversion. (b) Sigma/mu of the 
Gaussian distribution of Iref offset converted from sense pass rate. 

0 5 10 15 20 25 30 35

50%

60%

70%

80%

90%

100%

P
as

s
 R

at
e

Patrial Sum

 W/L=8
 W/L=9
 W/L=10

MC Points: 1000
Technode: TSMC 40nm
Ron: 20k

DOUT

PRE PRE

VCLP VCLP

SAEN

IBL IREF

MUX

VDD

DOUT_B
QQ_B

P1 P2

N1 N2

N3
BL

N4
BL_B

(a) (b)

Fig. 2 (a) Latch-based current-mode SA. (b) Sense pass rate for 5-bit 
ADC. 



epoch. Fig. 5 (a) & (b) shows the retrain curve of one specific 
chip that implements VGG-8 which uses Flash-ADC and SAR-
ADC, respectively. Chip with either Flash-ADC or SAR-ADC 
could recover the accuracy, however Flash-ADC has less initial 
accuracy drop and easier to be retrained to recover the high 
accuracy. This is consistent with the analysis in Section Ⅲ on 
the possible compensation of SA offsets for Flash-ADC. It is 
also seen that as the W/L decreases, it will be more difficult to 
retrain the model to recover the accuracy under process 
variations. When the W/L is small, which means the sense pass 
rate is also low, the accuracy may could not be fully recovered. 
It needed to be pointed out that the W/L reported here appears 
high since we use the minimum length (𝐿) as the L in our 
simulation. Generally, two to three times of 𝐿 will be used in 
the analog circuit to avoid very large process variation. We did 
not optimize the ADC with advanced offset cancellation 
techniques. Here our goal is just to show that by changing W/L, 
we could achieve different degrees of the process variation. Fig. 
5 (c) & (d) presents the accuracy distribution of several retrain 
tests before finetune and after finetune collected from multiple 
chips, respectively. From the plot, we could observe that the 
accuracy recovery from finetune is generally achievable.  

 We evaluate a white-box attack called Carlini and Wagner 
(C&W) Attack [11] on VGG-8 and Desnet-40 model in three 
different cases: Attack original model; Attack retrained digital 
model; Attack retrained chip (as described in Fig. 6). Table 1 
presents accuracy performance under three attack cases with 
different ADC settings (ADC variation decreases from A to D). 
As shown in table, chip accuracy could be generally recovered 
to baseline accuracy (above 90%) by retrain. While applying the 
adversarial attack to the original software baseline model 
(model0), accuracy drops to ~0% which means the attack is 
effective. However, when the generated adversarial examples 
from the software baseline are applied to chip1 (attack case 1), 
retrained on-chip network could still preserve relatively high 
accuracy (~75% for VGG-8, ~84% for DenseNet-40).  

    For attack case 2, the adversary first read out the retrained 
model (model1) which is finetuned to fit the ADC variation on 
chip1 and uses it to generate adversarial examples in software 
environment. The accuracy of model1 has already degraded 
before attack due to the lack of considering the ADC offsets 
according to variation level and its digital accuracy drops to ~0% 
after attack. However, while applying generated adversarial 
examples on chip1, accuracy is still relatively high thanks to the 
ADC variation. We could observe that the higher the ADC 
variation is, the more robust the chip will be to the adversarial 
examples from the digital model.  

    For attack case 3, instead of generating adversarial examples 
fully in software, adversarial examples are obtained in hybrid 
manner that inference is performed on chip2 and  
backpropagation is calculated by software. Under such attack, 
chip2 itself fails to generate even one correct answer but chip1 
can still maintain a certain accuracy since the chip variation is 
distinct from one to another and thus make the models unique 
for each chip. Besides, compared to VGG-8, DenseNet-40 is 
more robust to transferred adversarial examples (~86% 
compared to 64%) as shown in Table 1. 

 In Table 2, we varied the distance matric used in C&W 
attack on VGG-8 ( 𝐿, 𝐿ଶ, 𝐿∞ ), and we could see that the 
proposed defense is effective regardless of the used norm type. 
It should be pointed out that preserving CIFAR-10 accuracy 
~60% under adversarial attack is comparable with the prior 
software defense techniques [27].  

V. CONCLUSION 

 In this paper, the threats of adversarial attacks on CIM-based 
machine learning edge inference engine are identified.  We first 
explore ADC offset modeling in CIM designs and proposed an 
on-chip finetune scheme against adversarial examples. Our 
evaluation results show that by utilizing the ADC offset, the 
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Fig. 6 Pseudo-code of adversarial attack methods on actual chips. 

Network Finetune： 

 Train a network without variation, saved as model0   
 Load model0 to chip1 which has a set of ADC 

variation specified for it. Fine-tune the network to 
recover the accuracy.  

 Load model0 to chip2 which has a set of ADC 
variation specified for it. Fine-tune the network to 
recover the accuracy.  

Case1: Attack original model: 
 Attack model0, which is the pure digital network, to 

generate a set of images: adversarial examples 
 Apply adversarial examples to chip1 
Case2: Attack retrained digital model: 
 Read the digital weights on chip1 out and load it to 

network in pure digital version. In this case the digital 
model knows nothing about the adc offset and thus 
will experience performance degradation, we call this 
as model1. 

 Attack model1, which is the pure digital network, to 
generate a set of images: adversarial examples 

 Apply adversarial examples to chip1 
Case3: Attack retrained chip： 
 Attack chip2, which is a hybrid process that inference 

is performed on chip and backpropagation is 
calculated by software, to generate a set of images: 
adversarial examples 

 Apply adversarial examples to chip1 



DNN model could be retrained to maintain high accuracy. 
Accompanied by accuracy recovery, updated weights on chip 
will vary from chip to chip. The transferability of the adversarial 
examples are strongly suppressed by the finetune for each chip 
instance. While classification accuracy of original attacked chip 
drops to almost 0%, other chips with adversarial CIFAR-10 
images could still maintain more than 62% and 85% accuracy 
for VGG-8 and DenseNet-40, respectively. 
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Table 2: C&W attack on VGG-8 with different distance matric 

 
Attack original Attack retrained chip 

Software 
attack 

Attack 
on chip1 

Chip2 acc. 
after attack 

Attack   
on chip1 

Acc. before attack 91.96% 88.10% 90.5% 90.78% 

C&W 
attack 

𝐿 attack 0.57% 73.54% 0.261% 71.3% 
𝐿ଶ attack 0.68% 74.23% 0.024% 63.4% 
𝐿ஶ attack 2.61% 73.35% 0.879% 70.1% 

Table 1: Accuracy performance under C&W attack (𝑳𝟐)  
Chip Information Attack original model Attack retrained digital model  Attack retrained chip 

Chip 
config. 

ADC 
type 

W/L 
Retrained  
accuracy 

Software 
Attack(model0) 

Attack 
 on chip1 

Digital accuracy 
(model1) 

Software 
Attack(model1) 

Attack 
On chip1 

Chip2  acc. 
after attack 

Attack 
on chip1 

VGG-8 
A SAR 9 89.39% 

0.61% 

73.95% 74.75% 0.09% 83.43% 

0% 

62.10% 
B SAR 10 90.87% 75.12% 83.89% 0.24% 78.78% 64.80% 
C Flash 9 91.36% 74.10% 89.31% 0.15% 65.73% 65.10% 
D Flash 10 91.46% 74.40% 90.54% 0.21% 51.22% 64.30% 

DenseNet-40(k=24) 
A SAR 9 91.04% 

0% 

84.59% 20.04% 0% 87.69% 

0% 

87.20% 
B SAR 10 91.52% 83.11% 35.25% 0% 89.52% 85.25% 
C Flash 9 91.50% 85.56% 62.71% 0% 87.62% 86.80% 
D Flash 10 91.81% 84.19% 85.07% 0% 84.65% 86.30% 


