
978-1-6654-2375-5/21/$31.00 ©2021 IEEE

Mitigating Adversarial Attack for Compute-in-
Memory Accelerator Utilizing On-chip Finetune

Shanshi Huang, Hongwu Jiang and Shimeng Yu*

Georgia Institute of Technology, Atlanta, GA, USA *E-mail: shimeng.yu@ece.gatech.edu

Abstract—Compute-in-memory (CIM) has been proposed to
accelerate the convolution neural network (CNN) computation by
implementing parallel multiply and accumulation in analog
domain. However, the subsequent processing is still preferred to
be performed in digital domain. This makes the analog to digital
converter (ADC) critical in CIM architectures. One drawback is
the ADC error introduced by process variation. While research
efforts are being made to improve ADC design to reduce the offset,
we find that the accuracy loss introduced by the ADC error could
be recovered by model weight finetune. In addition to compensate
ADC offset, on-chip weight finetune could be leveraged to provide
additional protection for adversarial attack that aims to fool the
inference engine with manipulated input samples. Our evaluation
results show that by adapting the model weights to the specific
ADC offset pattern to each chip, the transferability of the
adversarial attack is suppressed. For a chip being attacked by the
C&W method, the classification for CIFAR-10 dataset will drop
to almost 0%. However, when applying the similarly generated
adversarial examples to other chips, the accuracy could still
maintain more than 62% and 85% accuracy for VGG-8 and
DenseNet-40, respectively.

Keywords—Deep neural network, hardware accelerator, in-
memory computing, adversarial attack and defense

I. INTRODUCTION

Though deep neural networks (DNNs) have yielded
outstanding results in a variety of applications, including speech
recognition, image classification, and natural language
processing [1], there is a growing concern regarding adversarial
attack which aims to fool the model with manipulated input
samples (e.g. adding with noises [2]). The prior works on
adversarial attack and defense mostly were performed from the
software’s perspective [3], there are rarely any discussions from
the hardware’s perspective. In this work, we will explore the
adversarial attack and defense on the actual inference chip based
on the compute-in-memory accelerator, which is becoming
attractive for power-constrained edge intelligence platform [4].

As DNNs are generally data and compute intensive, frequent
data movements between logic and memory units limit the
energy efficiency on traditional Von Neumann architecture. In
recent years, there are increasingly efforts on developing
specific hardware accelerators to run large-scale DNN models
from the cloud to the edge. For example, systolic architecture
such as TPU [5] employs many digital multiply and accumulate
(MAC) engines close to a large global buffer (i.e., SRAM) to
reduce the cost of data movement. As a more aggressive
approach, compute-in-memory (CIM) architecture [4] merges
the computation directly into the memory sub-arrays that ideally

addresses the memory-wall problem. The weights of a DNN
model could be mapped as the conductance of the memory cells
in the sub-array, while the input vector is loaded in parallel as
the voltage to the rows, then the multiplication is done in analog
fashion, and the current summation along columns represents
weighted sum. In principle, CIM could be implemented by
different device technologies. SRAM with modified bit-cell and
array periphery could enable parallel access as demonstrated in
recent silicon prototype chips [6]. Emerging non-volatile
memory (eNVM) technologies also provide promising solutions
due to a smaller cell size and potential of multi-bit per cell,
yielding a higher integration density at the same technology
node [7]. Besides, because of the non-volatile nature and near-
zero leakage, the eNVM-based CIM is more attractive to edge
devices. No matter which kind of memory technologies is used,
ADC is commonly essential as an important part of periphery
circuitry to convert the analog partial sum back to digital signal
for further processing. In other words, CIM is essentially mixed-
signal compute, thus the variations are unavoidable. As reported
in prior work [8], inference accuracy measured in CIM
prototypes generally is degraded from the software baseline. The
primary variation sources include the cell-to-cell variation for
eNVMs and the intrinsic ADC offset. Cell-to-cell variation
could be minimized by iterative write-verify technique with
tolerable overhead for inference engine [9]. A more critical
challenge is the intrinsic ADC offset introduced by the
manufacturing process variation. As a result, the ADC offset
may noticeably degrade the inference accuracy and cause
different chip instances having different inference results even
for the same input. It is noted that when ADC offset introduces
quantization error because of the process variation, these offset
patterns are static once the chip is fabricated.

As mentioned earlier, it has been suggested that DNN is
under the threat of adversarial examples, which could fool the
network easily while will not affect human’s decision. In
general, adversarial attacks could be categorized into white-box
attack and black-box attack based on the information of target
model exposed to the adversary. For the white-box attack
[10,11], the adversary has full access to the DNN model
architecture and weights. Whereas, only external access to the
network (e.g., input and output) could be used for the black-box
attacks [12,13]. The white-box attack can often achieve higher
attack success rates compared to the black-box attack [10].
While the white-box attack will cause more serious problem, it
is not easy for the adversary to get the access to a private model
in cloud. However, for the edge device, it is physically
accessible by anyone and thus could leak the model information
at high risk. Although defense methods have been proposed for

the white-box attack, the extra algorithmic calculation will
introduce speed and power overhead. This is undesired for the
edge device which has limited power budget and demands real-
time response.

In this work, we leverage the ADC offset pattern (which is
believed to be detrimental to the inference accuracy) but
finetune the model weights to take its advantage against the
adversarial attack on the CIM accelerator. In our evaluation, we
find that the accuracy drop could be compensated by finetuning
DNN parameters that adapt to ADC offset. This finetune, while
recovering the inference accuracy, makes the DNN parameters
slightly different from chip to chip, which brings us a byproduct:
the chip will be robust to the adversarial examples generated by
attacking other chips or software baseline. Explicitly, even if the
adversary attacks one chip instance by manipulating the
adversarial input, he/she could not use the same adversarial
input to attack all the other chip instances due to the uniqueness
of the DNN model for each chip.

This paper is organized as follows. Section II introduce the
principle of CIM scheme, and backgrounds of adversarial attack
and defense. Section III presents our methodology including
ADC offset modeling and hybrid on-chip/off-chip finetune
procedure. Section IV shows our evaluation setup and
evaluation results of the proposed defense method to the white-
box attack. Section V concludes the paper.

II. BACKGROUND

A. Pricinple of CIM

Convolutional neural network (CNN) is a major class of
DNNs. Convolution is an important mathematical operation
widely used in image processing which extracts the features of
images by filters. The inference operation of convolution is
essentially the vector-matrix multiplication (VMM).
Sometimes, the depth of the input channel and output channel
could be very large that make it hard to fit weights of one layer
into a single memory array considering slow access and
excessive energy consumption. Array partitioning [14] can be
introduced to parallelize the computation into multiple sub-
arrays. To maximize the input data reuse, a novel mapping
method was proposed in [15]. In this method, the weights at
different spatial location of each kernel correspond to different
sub-kernels. These sub-kernels are mapped into different
subarrays. Because of the window sliding manner of
convolution, sub-kernels of each position will see the input to
their neighbor at the window sliding direction. In this case, by
passing the used input vectors in the same direction as the kernel
“slides over” the input tensor, the input vectors can be reused
among the subarrays efficiently.

The crossbar nature of memory array is a natural substrate
for implementing VMM in a highly parallel manner. As shown
in Fig. 1, the crossbar array consists of perpendicular rows and
columns with the memory cell located at each cross-point.
Weights in the filters are mapped as the content of the cells. The
VMM operation is performed as follows: read voltages
representing the input feature map are applied to all the rows so
that the read voltages are multiplied by the memory cells at each
cross-point. The current through each device is summed up
along columns. Different columns represent filters for different

output channels, who should see the same input thus all the
columns work at the same time in parallel. Typically, ADCs are
needed at the end of the column to convert the analog current to
the digital output so that the subsequent processing such as
activation and pooling could be performed in the digital domain.
In principle, VMM could be done in fully parallel fashion if
asserting all the rows and all the columns simultaneously. In
practice, multiple rows/columns could be partially turned on due
to the sensing resolution of ADCs or the mismatch of column
pitch to the peripheral circuitry’s dimension.

B. Adversarial attack

While AI applications become more prevailing in our daily
life, their security vulnerability becomes a serious concern. On
one side, the DNN model becomes a valuable asset since it may
bring financial profit. The model stealing will ease the life of
adversary to get a well-trained model or private training dataset
information. On the other side, the DNN model itself could be
adversarial attacked, poison attacked, etc., thereby being
hampered from the intended usage.

Poisoning attack is an attack mechanism that happens
during the training of the machine learning model. Generally, it
is done by injecting “bad” data into the training dataset so that
the model achieves good performance during training but
becomes more fragile during inference [16]. Software
techniques [17] are also proposed to defend model from the
poisoning attack to some extent.

The adversarial attack has been widely studied in the
software domain, especially on DNN-based classification tasks.
Adversarial examples, which could be defined as “inputs
formed by applying small but intentionally worst-case
perturbations to examples from the dataset, such that the
perturbed input results in the model outputting an incorrect
answer with high confidence” [2], could hurt the functionality
of DNN models while cause no uncertainty on human’s
decision. In physical worlds, camera noise, stick on the target
object, etc. may lead to adversarial examples causing safety-
critical situations like self-driving car. In general, the
adversarial attacks could be divided into two categories, which
are white-box attack and black-box attack, according to the
exposure level of network information to the adversary.

1) White box attack
For white box attack, the attackers are supposed to have the

access to the network structure and parameters, thus make it easy

BL

WL

SL

SL header

C
trl

MUX

ADC

Shift‐add

or

WL

BLBLB

QB Q

SRAM

eNVM
Isum=∑i

i

i

W
L
Sw

it
ch
 M

at
ri
x

&
 B
L
H
ea
d
er

Fig. 1 The crossbar array for CIM architecture with SRAM or
eNVM.

to generate adversarial examples by utilizing gradient [2],
optimization [11], etc.

2) Black box Attacks
In the black-box attack, the adversary has no access to the

model parameters. What he/she could only do is to feed the input
to the network and observe the output from the network. So, in
principle, black-box try to “extract” network information from
the input-output pairs. A typical method used by black-box
attack is to train a new model using the new dataset generated
from the victim model, which is called substitute model. The
adversary has full access to the substitute model and thus could
apply the white-box attack on it [18].

C. Adversarial defense

In order to protect the integrity of DNN models, different
countermeasures have been proposed against adversarial
examples. Since most white-box attacks strongly depend on the
gradient to generate adversarial examples, one straight way is to
make gradient inaccessible. For example, in [19,20], some non-
smooth or non-differentiable functions are added to preprocess
the inputs so that it will not cause problem when calculating
weights’ gradient during training but cut the gradient to the
input. As mentioned in [2], it claimed that the adversarial
examples exist since the data space explored by the network is
limited. Thus, a simple but efficient way to improve the
robustness is to retrain the network with adversarial examples
included with correct labels, which is called adversarial training.
Since the adversarial examples are generated by adding some
noise to move the input to some “untouched” region, one could
force it back by input preprocessing such as de-noise [21] and
compression [22]. In addition, since the attack is normally
applied on a certain model, some randomness can be introduced
into the network parameters so that the adversary could not
predict which exact set of parameters of the model will be used
for classification [23].

In this work, instead of trying to defend against adversarial
examples of a certain model in software, we aim to reduce the
transferability of the adversarial examples among actual chips.
It works like the aforementioned software defense method of
introducing randomness into the network parameters. For CIM
architecture that employs ADCs, there are intrinsic process
variations that will introduce quantization error. As shown in
previous prototype chip measurement results, even with
precisely designed ADCs, the accuracy will be low if the ADCs
all share the same references [24]. To achieve high accuracy, the
references of each ADC need to be adjusted independently. This
requirement for ADC reference adjustment and independent
reference for each ADC brings additional hardware overhead.
Alternatively, we could adjust the weights with several retrain
epoch, namely “finetune” process. When the model is adapted
to the ADC offset pattern, the inference accuracy could be
recovered. The overhead of model finetune in software is much
less than the implementation of adjustable ADC references on-
chip. Now we could take advantages of the model finetune to
reduce the transferability of the adversarial examples from
software baseline to actual chips, and from one chip to another.

III. METHODOLOGY

A. ADC offset modeling

As aforementioned, ADC plays an important role to support
mixed-signal processing and has a significant impact on the
inference accuracy. As reported in prior CIM design, ADC
quantization will lead to a degraded accuracy performance [8].
There are mainly two causes: partial sum quantization loss and
ADC offset. The resolution of ADC is determined by the partial
sum precision required from the sub-array, which is then
affected by the number of rows that are turned on
simultaneously and the memory cell precision. When a large
weight matrix is partitioned into several sub-arrays, partial sums
are obtained from multiple sub-arrays and then accumulated.
Considering huge hardware overhead introduced by ADCs, The
resolution of ADC is usually less than full precision of the partial
sum, causing quantization loss. The quantization loss of partial
sums will be also gathered while accumulating partial sums,
which leads to more accuracy loss. The impact of quantization
loss could be relieved by sacrificing hardware performance (e.g.
turn on less number of rows simultaneously) or reducing
required input/weight precision (e.g. network compression). On
the other hand, ADC offset caused by process variation is a more
critical issue. Unlike cell conductance variation which could be
manually tightened by aggressive write-verify [9], ADC offset
for a given circuit topology is purely defined by manufacturing
process variation. The intrinsic ADC offset makes the partial
sum read-out from one memory sub-array different from the
correct value after quantization. Despite offset could be
compensated by advanced offset cancellation techniques but
with significant area overhead [25], the tight column pitch of
CIM subarrays limits using advanced ADCs in order to preserve
the parallelism of the computation.

The popular ADC topologies in prior CIM works are Flash-
ADC and successive-approximation-register (SAR)-ADC due
to their simplicity and suitability. Flash-ADC is made of
cascading comparators. For an N-bit converter, the circuit
employs 2ே െ 1 comparators. After comparison, the
thermometer code is then encoded to the binary code.
Oppositely, SAR-ADC only hires a single comparator but needs
several iterative cycles to finish bit-by-bit comparison based on
binary search algorithm. Both ADC designs are investigated to
evaluate our proposed adversarial defense scheme. In both
traditional memory and CIM designs, sense amplifier (SA) is
typically employed as comparator as it can achieve high speed
at low power consumption. In our evaluation, we use a simple
current-mode SA design as shown in Fig. 2 (a), which is based
on the classic cross-coupled latch structure (P1-P2, N1-N2).
This SA operates in 2 phases: precharge & sensing. During the
precharge phase, the PRE signal goes low and the bit-lines are
precharged to VDD. During the sensing phase, the PRE and
SAEN signals are both high which activates the cross-coupled
structure to pull the outputs to the appropriate full logic level. In
CIM design, bitline current becomes smaller as load resistance
is larger, corresponding to smaller partial sum value.

As a case study, we build a 5-bit ADC with such SA design
to explore the offset impact on ADC outputs. Fig. 2 (b) shows
the relationship between ADC pass rate and partial sum value
according to the 1,000 Monte Carlo simulation runs with TSMC

40nm PDK which offers eNVM process [26]. Here the sense
pass rate is defined as the probability to sense correctly between
the bitline current (partial sum) and its nearest reference current
(Iref). As shown in the plot, the sense pass rate decreases with
increasing partial sum value (namely increasing bitline current).
This observation was also reported in the silicon data [7] and
could be explained as follows: the absolute sensing voltage
difference is determined by bitline current and reference current.
When the bitline current becomes larger as partial sum
increases, the sensing voltage variation caused by ADC offset
(especially N3-N4) tends to dominate, thus the output is more
decided by the intrinsic SA variation. Another reason is that
column current is inversely proportional to bitline resistance.
This property leads to smaller ADC step size for higher ADC
level (partial sum), in which the variation causes higher error
rate. We also find that the pass rate slightly increases as
transistor W/L ratio increases.

As shown in Fig. 3 (a), the pass rate of SA is converted as
the cumulative probability of Iref being smaller than the Psum,
corresponding to the green shade area. Assuming the Iref
distribution follows the Gaussian function, we regard ADC
offset as the distance between shifted Iref and its ideal value and
the sigma of Iref could be back-calculated. As abovementioned,
process variation is caused by manufacturing, thus the Iref shift
is a static variation over time. From the DNN model’s
standpoint, the Iref shift could be regarded as partial sum
quantization bias. For 5-bit Flash-ADC, since each SA performs
the comparison at its certain reference level (31 different levels),
each SA has different shift value. Oppositely, SAR-ADC only
employs the same SA during the entire comparison, thus the Iref
should be shifted to the same direction for each reference level.
Based on the observation that the sigma over mu ratio of the shift
distribution is increased with Iref (Fig. 3(b)), we scale up the
absolute shift value (normalized to Iref) by the ratio. For Flash-
ADC, as random shifts from different SA are independent, offset
compensation is possible. However, the mechanism of SAR-
ADC determines that offset of different levels shifts towards one
direction. As a result, while sensing the same partial sum, SAR-
ADC has bigger offset than Flash-ADC as shown in Fig.4. Fig.
4 (a) (b) shows the output distribution with offset for Flash-ADC
while Fig. 4 (c) (d) shows the output distribution for SAR-ADC.
From the plot, we can also observe that ADC with smaller
transistor size (e.g. W/L) could induce more offset, resulting in
lower sense pass rate. As we utilize the process variations in this
work, SAR-ADC with larger variation is a better choice.

B. Procedure of weights finetune

We now discuss the on-chip/off-chip hybrid finetune
procedure to mitigate adversarial attack from the hardware
standpoint. During the retraining, the feedforward propagation
(inference) is first performed on-chip, and then the
backpropagation and weight update are done off-chip by
software. The detailed process is as follows: we will run the
inference on a specific chip that captures its specific ADC offset
pattern, then the prediction of the inference will be compared
with the ideal label for the loss function; after obtaining the
estimated loss, weights are updated through backpropagation in
software; finally, the memory cells will be reprogramed to the
new weights possibly with write-verify. In our evaluation, the
partial sum will sample the ADC offset from the estimated
distribution as in Fig. 3(a), and the distorted partial sum will be
used as output feature map and saved for error and gradient
calculation. The backpropagation and weight update are all
directly use floating-point calculation as done in software.

IV. EVALUTION RESULTS

We evaluate the proposed hybrid finetune defense method
with VGG-8 and DenseNet-40 networks for CIFAR-10 dataset.
The precision setting is 8-bit activation and 2-bit weight for
VGG-8, and 8-bit activation and 8-bit weight for DenseNet-40.
The software baseline accuracy is ~92% for both networks. For
the weight finetune process, the batch size of retrain is 200,
which means there are 250 iterations to finish the finetune in one

Fig. 4 Simulated ADC output with offset sampled from the Iref
distribution

5 10 15 20 25 30

0

10

20

30

 25%~75%

 Range within 1.5IQR

 Median Line

 Mean

 Outliers

Ideal ADC Output

A
c

u
ta

l A
D

C
 O

u
tp

u
t

w
it

h
 O

ff
s

et

SAR ADC
W/L = 10

5 10 15 20 25 30

0

10

20

30

 25%~75%
 Range within 1.5IQR
 Median Line
 Mean
 OutliersA

c
tu

al
 A

D
C

 O
u

tp
u

t
w

it
h

 O
ff

s
et

Ideal ADC Output

SAR ADC
W/L = 8

5 10 15 20 25 30

0

10

20

30

 25%~75%

 Range within 1.5IQR

 Median Line

 Mean

 OutliersA
c

tu
al

 A
D

C
 O

u
tp

u
t

w
it

h
 O

ff
s

et

Ideal ADC Output

Flash ADC
W/L = 10

5 10 15 20 25 30

0

10

20

30

A
c

tu
al

 A
D

C
 O

u
tp

u
t

w
it

h
 O

ff
s

et

 25%~75%

 Range within 1.5IQR

 Median Line

 Mean

 Outliers

Flash ADC
W/L = 8

Ideal ADC Output(a) (b)

(c) (d)

0 5 10 15 20 25 30 35

0.0

0.2

0.4

0.6

s
ig

m
a

/m
u

 f
o

r
Ir

e
f

S
h

if
t

D
is

tr
ib

u
ti

o
n

Normalized Reference Current(mu)

 Sigma/mu for W/L = 10
 Sigma/mu for W/L = 9
 Sigma/mu for W/L = 8

(a)
153 4 5 6 7 8 9 10 11 12 13 14

Integration of
this region will
be pass rate of

the SA

 Iref shift distribution of ref = 5.5
 Iref shift distribution of ref = 10.5

REF = 5.5 Psum = 6

REF = 10.5 Psum = 11

Partial Sum (b)
Fig. 3 (a) Sense pass rate to Iref offset conversion. (b) Sigma/mu of the
Gaussian distribution of Iref offset converted from sense pass rate.

0 5 10 15 20 25 30 35

50%

60%

70%

80%

90%

100%

P
as

s
 R

at
e

Patrial Sum

 W/L=8
 W/L=9
 W/L=10

MC Points: 1000
Technode: TSMC 40nm
Ron: 20k

DOUT

PRE PRE

VCLP VCLP

SAEN

IBL IREF

MUX

VDD

DOUT_B
QQ_B

P1 P2

N1 N2

N3
BL

N4
BL_B

(a) (b)

Fig. 2 (a) Latch-based current-mode SA. (b) Sense pass rate for 5-bit
ADC.

epoch. Fig. 5 (a) & (b) shows the retrain curve of one specific
chip that implements VGG-8 which uses Flash-ADC and SAR-
ADC, respectively. Chip with either Flash-ADC or SAR-ADC
could recover the accuracy, however Flash-ADC has less initial
accuracy drop and easier to be retrained to recover the high
accuracy. This is consistent with the analysis in Section Ⅲ on
the possible compensation of SA offsets for Flash-ADC. It is
also seen that as the W/L decreases, it will be more difficult to
retrain the model to recover the accuracy under process
variations. When the W/L is small, which means the sense pass
rate is also low, the accuracy may could not be fully recovered.
It needed to be pointed out that the W/L reported here appears
high since we use the minimum length (𝐿) as the L in our
simulation. Generally, two to three times of 𝐿 will be used in
the analog circuit to avoid very large process variation. We did
not optimize the ADC with advanced offset cancellation
techniques. Here our goal is just to show that by changing W/L,
we could achieve different degrees of the process variation. Fig.
5 (c) & (d) presents the accuracy distribution of several retrain
tests before finetune and after finetune collected from multiple
chips, respectively. From the plot, we could observe that the
accuracy recovery from finetune is generally achievable.

 We evaluate a white-box attack called Carlini and Wagner
(C&W) Attack [11] on VGG-8 and Desnet-40 model in three
different cases: Attack original model; Attack retrained digital
model; Attack retrained chip (as described in Fig. 6). Table 1
presents accuracy performance under three attack cases with
different ADC settings (ADC variation decreases from A to D).
As shown in table, chip accuracy could be generally recovered
to baseline accuracy (above 90%) by retrain. While applying the
adversarial attack to the original software baseline model
(model0), accuracy drops to ~0% which means the attack is
effective. However, when the generated adversarial examples
from the software baseline are applied to chip1 (attack case 1),
retrained on-chip network could still preserve relatively high
accuracy (~75% for VGG-8, ~84% for DenseNet-40).

 For attack case 2, the adversary first read out the retrained
model (model1) which is finetuned to fit the ADC variation on
chip1 and uses it to generate adversarial examples in software
environment. The accuracy of model1 has already degraded
before attack due to the lack of considering the ADC offsets
according to variation level and its digital accuracy drops to ~0%
after attack. However, while applying generated adversarial
examples on chip1, accuracy is still relatively high thanks to the
ADC variation. We could observe that the higher the ADC
variation is, the more robust the chip will be to the adversarial
examples from the digital model.

 For attack case 3, instead of generating adversarial examples
fully in software, adversarial examples are obtained in hybrid
manner that inference is performed on chip2 and
backpropagation is calculated by software. Under such attack,
chip2 itself fails to generate even one correct answer but chip1
can still maintain a certain accuracy since the chip variation is
distinct from one to another and thus make the models unique
for each chip. Besides, compared to VGG-8, DenseNet-40 is
more robust to transferred adversarial examples (~86%
compared to 64%) as shown in Table 1.

 In Table 2, we varied the distance matric used in C&W
attack on VGG-8 (𝐿, 𝐿ଶ, 𝐿∞), and we could see that the
proposed defense is effective regardless of the used norm type.
It should be pointed out that preserving CIFAR-10 accuracy
~60% under adversarial attack is comparable with the prior
software defense techniques [27].

V. CONCLUSION

 In this paper, the threats of adversarial attacks on CIM-based
machine learning edge inference engine are identified. We first
explore ADC offset modeling in CIM designs and proposed an
on-chip finetune scheme against adversarial examples. Our
evaluation results show that by utilizing the ADC offset, the

0 100 200
0%

20%

40%

60%

80%

100%

A
cc

u
ra

cy

Finetune Iteration

 W/L=8
 W/L=9
 W/L=10

Flash ADC
2bits weights
1epoch ~ 250 Iter

0 100 200
0%

20%

40%

60%

80%

100%

A
cc

u
ra

cy

Finetune Iteration

 W/L=8
 W/L=9
 W/L=10

SAR ADC
2bits weights
1epoch ~ 250 Iter

SAR(8) SAR(9) SAR(10) Flash(8) Flash(9) Flash(10)
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 25%~75%
 Range within 1.5IQR
 Median Line
 Mean
 OutliersA

c
cu

ra
cy

 b
ef

o
re

 F
in

e-
tu

n
e

ADC Type(W/L)

~87%~86%
~89%

SAR(8) SAR(9) SAR(10) Flash(8) Flash(9) Flash(10)
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

ADC Type(W/L)

A
cc

u
ra

cy
 a

ft
er

 F
in

e-
tu

n
e

 25%~75%
 Range within 1.5
 Median Line
 Mean
 Outliers

~91%~90%

(a) (b)

(c) (d)

Fig. 5 (a) Retrain curve of Flash-ADC in one epoch. (b) Retrain
curve of SAR-ADC in one epoch. (c) Accuracy distribution before
finetune with ADC offset on VGG-8. (d) Accuracy distribution after
finetune with ADC offset on VGG-8.

Fig. 6 Pseudo-code of adversarial attack methods on actual chips.

Network Finetune：

 Train a network without variation, saved as model0
 Load model0 to chip1 which has a set of ADC

variation specified for it. Fine-tune the network to
recover the accuracy.

 Load model0 to chip2 which has a set of ADC
variation specified for it. Fine-tune the network to
recover the accuracy.

Case1: Attack original model:
 Attack model0, which is the pure digital network, to

generate a set of images: adversarial examples
 Apply adversarial examples to chip1
Case2: Attack retrained digital model:
 Read the digital weights on chip1 out and load it to

network in pure digital version. In this case the digital
model knows nothing about the adc offset and thus
will experience performance degradation, we call this
as model1.

 Attack model1, which is the pure digital network, to
generate a set of images: adversarial examples

 Apply adversarial examples to chip1
Case3: Attack retrained chip：
 Attack chip2, which is a hybrid process that inference

is performed on chip and backpropagation is
calculated by software, to generate a set of images:
adversarial examples

 Apply adversarial examples to chip1

DNN model could be retrained to maintain high accuracy.
Accompanied by accuracy recovery, updated weights on chip
will vary from chip to chip. The transferability of the adversarial
examples are strongly suppressed by the finetune for each chip
instance. While classification accuracy of original attacked chip
drops to almost 0%, other chips with adversarial CIFAR-10
images could still maintain more than 62% and 85% accuracy
for VGG-8 and DenseNet-40, respectively.

REFERENCES
[1] Y. Lecun, et al., "Deep learning," Nature, vol. 521, pp.436-444, 2015.

[2] I. Goodfellow, et al., “Explaining and harnessing adversarial examples,”
International Conference on Learning Representations(ICLR), 2015.

[3] H. Xu, et al., “Adversarial attacks and defenses in images, graphs and text:
A review,” International Journal of Automation and Computing
(IJAC) vol. 17, no. 2 pp.151–178, 2020

[4] S. Yu, “Neuro-inspired computing with emerging non-volatile memory,”
in Proc. IEEE, vol. 106, no. 2, pp. 260-285, 2018

[5] N. P. Jouppi, et al., "In-datacenter performance analysis of a tensor
processing unit," ACM/IEEE International Symposium on Computer
Architecture (ISCA), 2017

[6] W.-S. Khwa, et al., “A 65nm 4Kb algorithm-dependent computing-in-
memory SRAM unit-macro with 2.3 ns and 55.8 TOPS/W fully parallel
product-sum operation for binary DNN edge processors,” IEEE
International Solid-State Circuits Conference (ISSCC), 2018.

[7] C.-X. Xue, et al., "A 1Mb multibit ReRAM computing-in-memory macro
with 14.6 ns parallel MAC computing time for CNN based AI edge
processors," IEEE International Solid-State Circuits Conference-
(ISSCC), 2019.

[8] X. Sun, et al., “XNOR-RRAM: A scalable and parallel resistive synaptic
architecture for binary neural networks,” ACM/IEEE Design, Automation
& Test in Europe (DATE) Conference, 2018.

[9] S. Yin, et al., "Monolithically integrated RRAM-and CMOS-based in-
memory computing optimizations for efficient deep learning," IEEE
Micro, vol. 39, no. 6, pp. 54-63, 2019

[10] C. Szegedy, et al., “Intriguing properties of neural networks,”
arXiv:1312.6199, 2013.

[11] N. Carlini, et al., “Towards evaluating the robustness of neural networks,”
IEEE Symposium on Security and Privacy (SP), 2017.

[12] Y. Liu, et al., “Delving into transferable adversarial examples and black-
box attacks,” arXiv:1611.02770, 2016.

[13] N. Papernot, et al., “Transferability in machine learning: from phenomena
to black-box attacks using adversarial samples,” arXiv:1605.07277, 2016.

[14] P.-Y. Chen, et al., “Partition SRAM and RRAM based synaptic arrays for
neuro-inspired computing,” IEEE International Symposium on Circuits
and Systems (ISCAS), 2016.

[15] X. Peng, et al., "Optimizing weight mapping and data flow for
convolutional neural networks on RRAM based processing-in-memory
architecture," IEEE International Symposium on Circuits and Systems
(ISCAS), 2019.

[16] X. Chen, et al. "Targeted backdoor attacks on deep learning systems using
data poisoning," arXiv:1712.05526, 2017.

[17] M, Jagielski, et al. "Manipulating machine learning: Poisoning attacks
and countermeasures for regression learning," IEEE Symposium on
Security and Privacy (SP), 2018.

[18] N. Papernot, et al., “A practical black-box attacks against machine
learning,” ACM on Asia Conference on Computer and Communications
Security, 2017.

[19] J. Buckman, et al., “Thermometer encoding: One hot way to resist
adversarial examples,” International Conference on Learning
Representations(ICLR), 2018.

[20] C. Guo, et al., “Countering adversarial images using input
transformations.” arXiv:1711.00117, 2017.

[21] F. Liao, et al., "Defense against adversarial attacks using high-level
representation guided denoiser," IEEE Conference on Computer Vision
and Pattern Recognition(CVPR), 2018.

[22] Z. Liu, et al., "Feature distillation: Dnn-oriented jpeg compression against
adversarial examples," IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2019.

[23] Z. He, et al., "Parametric noise injection: Trainable randomness to
improve deep neural network robustness against adversarial
attack," IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2019.

[24] S, Yin, et al., "High-throughput in-memory computing for binary deep
neural networks with monolithically integrated RRAM and 90-nm
CMOS," IEEE Transactions on Electron Devices, vol. 67 no. 10, pp.
4185-4192, 2020.

[25] C.-P. Lo, et al., “Embedded 2Mb ReRAM macro with 2.6 ns read access
time using dynamic-trip-point-mismatch sampling current-mode sense
amplifier for IoE applications,” IEEE Symposium on VLSI Circuits, 2017.

[26] C.-C. Chou, et al., “An N40 256K× 44 embedded RRAM macro with SL-
precharge SA and low-voltage current limiter to improve read and write
performance,” IEEE International Solid-State Circuits Conference
(ISSCC), 2018.

[27] H. Zhang et al.. "Defense against adversarial attacks using feature
scattering-based adversarial training." Advances in Neural Information
Processing Systems, pp. 1831-1841 2019.

Table 2: C&W attack on VGG-8 with different distance matric

Attack original Attack retrained chip

Software
attack

Attack
on chip1

Chip2 acc.
after attack

Attack
on chip1

Acc. before attack 91.96% 88.10% 90.5% 90.78%

C&W
attack

𝐿 attack 0.57% 73.54% 0.261% 71.3%
𝐿ଶ attack 0.68% 74.23% 0.024% 63.4%
𝐿ஶ attack 2.61% 73.35% 0.879% 70.1%

Table 1: Accuracy performance under C&W attack (𝑳𝟐)
Chip Information Attack original model Attack retrained digital model Attack retrained chip

Chip
config.

ADC
type

W/L
Retrained
accuracy

Software
Attack(model0)

Attack
 on chip1

Digital accuracy
(model1)

Software
Attack(model1)

Attack
On chip1

Chip2 acc.
after attack

Attack
on chip1

VGG-8
A SAR 9 89.39%

0.61%

73.95% 74.75% 0.09% 83.43%

0%

62.10%
B SAR 10 90.87% 75.12% 83.89% 0.24% 78.78% 64.80%
C Flash 9 91.36% 74.10% 89.31% 0.15% 65.73% 65.10%
D Flash 10 91.46% 74.40% 90.54% 0.21% 51.22% 64.30%

DenseNet-40(k=24)
A SAR 9 91.04%

0%

84.59% 20.04% 0% 87.69%

0%

87.20%
B SAR 10 91.52% 83.11% 35.25% 0% 89.52% 85.25%
C Flash 9 91.50% 85.56% 62.71% 0% 87.62% 86.80%
D Flash 10 91.81% 84.19% 85.07% 0% 84.65% 86.30%

