
Approximate Programming Design for Enhancing Energy,
Endurance and Performance of Neural Network Training

on NVM-based Systems
Chien-Chung Ho1,2,4, Wei-Chen Wang3,6, Te-Hao Hsu1,8, Zhi-Duan Jiang1,5, and Yung-Chun Li3,7
1 Department of Computer Science and Information Engineering, National Chung Cheng University
2 Department of Computer Science and Information Engineering, National Cheng Kung University

3 Macronix Emerging System Lab, Macronix International Co., Ltd.
{4ccho, 5u07410078}@cs.ccu.edu.tw, {6raymondwang, 7monixslee}@mxic.com.tw, 8xude32@gmail.com

Abstract—Recently, it is found non-volatile memories (NVMs) offer
opportunities for mitigating issues of neural network training on DRAM-
based systems by taking advantage of its near-zero leakage power
and high scalability properties. However, it brings the new challenges
on energy consumption, lifetime and performance degradation caused
by the massive weight/bias updates performed during training phases.
To tackle these issues, this work proposes an approximate write-once
memory (WOM) code method with considering the characteristics of
weight updates and error tolerability of NNs. In particular, the proposed
method aims to effectively reduce the number of writes on NVMs.
The experimental results demonstrate that great enhancement on energy
consumption, endurance and write performance can be simultaneously
achieved without sacrificing the inference accuracy.

I. INTRODUCTION

In recent years, neural networks (NNs) reveal a significant impact in
many different application domains, especially in the computer vision
and machine learning applications, such as object detection and image
recognition. Before adopting neural networks to every corner in the
world for the inference, vendors and developers have to first train
neural network models with abundant training data. Nevertheless,
the large leakage power, insufficient memory density and scaling
difficulty issues restrict the development of the conventional DRAM-
based systems. NVM-based systems then grab people’s attention due
to their large memory density and near-zero leakage power [17], [19].
However, NVM has inherent drawbacks, such as the higher program
energy, worse endurance and longer write latency. These problems
should be resolved before putting the NVM-based systems/devices
in practice so as to obtain a feasible solution for neural networks.
Although the large-density NVM with near-zero leakage power is
suitable for training NNs, how to maintain the comparable energy
consumption, endurance and performance is still challenging. This
motivates this work to explore solutions about how to integrate
the characteristic of NNs with management of NVMs for resolving
the aforementioned issues. Especially, we are highly interested in
investigating the approach which exploits the error-tolerable and
approximate computing properties of NNs.

A neural network consists of multiple layers, and each layer
usually contains a large number of artificial neurons. In general,
the usage of neural networks can be categorized into two phases:
the training phase and the inference phase. In the training phase,
neural networks execute the forward propagation, which computes
the input data through a series of linear (e.g., multiply-accumulate)
and non-linear (e.g., pooling) computations in the hidden layers,
and eventually obtains the output results. NNs then update weights
and biases in the backward propagation so as to let the output
results better fit the true data and acquire higher accuracy. Once the
neural network is well-trained, it would be applied to edge devices
for the inference tasks. However, NN computation usually involves
massive weights and/or intermediate data which lead to excessive data
movement and computation overheads. To minimize the NN model
size and enhance the inference performance for inference tasks, lots
of excellent works had been proposed in the past few years. Some
researchers proposed the quantization method to quantize data into
lower bit precision [10], [14], others proposed the pruning approaches

to prune the redundant nodes and layers [18], [20], and still others
presented the compact neural network architectures [1], [6]. Except
for the inference phase enhancement, lots of efforts had been paid on
the training phase improvement. For instance, to enhance the training
performance with higher training speed, some researchers proposed
to parallelize computing processes of the NN training over single
or multiple GPUs [15], [24]. Besides, some researchers proposed
the optimization approaches to realize on-device training/learning [7],
[8], and some proposed to virtualize the memory usage of NNs so
as to fit NNs into the DRAM capacity [13]. It is worth noting that
the proposed approaches in this work are orthogonal to most of the
aforementioned NN optimization techniques.

It has been established that the conventional DRAM-based system
encounters slow scaling, large leakage power and insufficient capacity
issues. These issues become severe when the training neural networks
are applied on DRAM-based devices since the training tasks will
generate much more needs on the memory capacity and performance,
compared to the general inference tasks. Therefore, the non-volatile
memory (NVM), especially phase change memory (PCM), soon
becomes a potential solution for the systems with adopting the neural
network training, mostly because of their high density and near-zero
leakage power. However, PCM has larger write power, slower write
speed and worse endurance, compared to DRAM. To address these
issues, researchers have paid great efforts to improve performance
and reliability for PCM-based devices/systems. For instance, some
researchers focused on proposing the various programming techniques
for enhancing the performance of PCM, such as Flip-N-Write [16],
2Stage-Write [9], Partial-SET [3], PreSET [12] and WOM-SET [22].
In recent years, researchers further started to leverage NVM and PCM
for neural network applications, such as the hot-spot suppression
approach [4] on NVM-based systems. However, it could be adopted
only for the inference phase. Meanwhile, some researchers proposed
innovative designs for training neural networks on NVM-based or
PCM-based systems [5], [21]. Nonetheless, the proposed approach
in [5] would degrade the training and write performance, while the
proposed approach in [21] only optimized the write performance
and endurance. That is, none of the proposed approaches aimed to
simultaneously improve the energy consumption, endurance and write
performance for training NNs on NVM-based devices or systems.

This research is motivated by the scalability problems of running
neural networks over conventional DRAM-based systems. Although
NVM provides nice features, such as high density and near-zero
leakage power it also leads to the severe energy, lifetime, and
performance problems. The objective of this work is to achieve
the energy, endurance and performance enhancement of NVM-based
devices while the comparable NN accuracy is still maintained. We
aim at exploring how to characterize and analyze neural networks and
proposing the management design with taking the observed charac-
teristics of neural networks (e.g., error-tolerability and approximate
computing properties) into considerations. We further evaluated the
feasibility and capability of the proposed design through a series of
experiments, and the results demonstrate that our proposed design
could enhance the energy consumption by up to 61%, and improve
the endurance and performance by up to 78%, and 46% respectively.978-1-6654-2375-5/21/$31.00 ©2021 IEEE

The rest of this paper is organized as follows. Section II presents
background and research motivation. Section III demonstrates our
proposed approximate programming design. Section IV shows the
capability of our proposed design. Section V concludes this work.

II. BACKGROUND AND RESEARCH MOTIVATION

A. WOM Code Method on NVM-based System

Applying neural network training on NVM-based systems can help in
diminishing the inherent issues happened on DRAM-based systems,
e.g., slow scaling, large leakage power, and insufficient capacity.
However, PCM-based system could incur the new issues such as
asymmetric write performance, larger write energy consumption and
worse endurance. Typically, the SET and RESET operations are used
to programmed PCM cells from ‘0’ to ‘1’ and from ‘1’ to ‘0’
respectively, and the latency of SET operation is about 8× slower
than that of RESET operation [12]. Besides, both of SET and RESET
operations are usually simultaneously executed on PCM cells since a
memory line contains hundred of bits, and thus the write performance
of PCM is mainly hampered by the slower one which is the SET
operation. To resolve the write asymmetric problem, a “PreSET”
approach is proposed to proactively SET all the data bits into ’1’s
during memory bank idle period, and then the memory controller only
has to execute RESET operation during the memory write period [12].
As a result, PreSET can effectively enhance the write performance
since we simply have to execute the faster RESET operation in each
write period.

Fig. 1. The encoding rule of WOM-SET.

Although applying PreSET helps improve the write performance,
it also results in generating a large number of bit flips on the
programmed cells and thus incurs the energy consumption and
lifetime issues. To ease the negative effects caused by applying
PreSET, a Write-Once-Memory-SET (referred to as WOM-SET) was
proposed to enhance not only write performance but also write energy
efficiency for the PCM [22]. The WOM-SET approach adopts WOM
code method to encode every two-bit data into three-bit data, and
then program the three-bit encoded data on PCM cells, as shown
in Figure 1. Similar to the PreSET approach, the WOM-SET also
applies SET operation to let all the data bits be turned into ‘1’s
during memory bank idle period. For every two updates/writes on
the two-bits data, it first follows the rule on the “1st write” stage
to program the three-bit data into the corresponding state for the
first write/update. For the second write/update on cells which have
been applied with the first write, it switch to follow the rule on the
“2nd write” stage to program the three-bit data into the corresponding
state. Note that, if the original data of the first write and second
write are same, WOM-SET will not reprogram the data and just
leave the data as the “1st write” encoding state. WOM-SET can
be better explained with the example in Figure 2. It is found that
the WOM-SET approach could decrease the number of bit flips
and thus limits the energy consumption without sacrificing the write
performance, compared to the basic and PreSET approaches. To sum
up, WOM-SET could achieve high write performance and low energy
consumption simultaneously due to the reduced bit-flip accumulation.
However, WOM-SET approach could result in the space overhead

since it creates one bit overhead for every two-bit data. It can result
in the worse endurance problem on the PCM.

Fig. 2. Comparison of bit-flip count and energy consumption on PCM with
applying the different approaches.

B. Research Motivation

Although adopting WOM-code approach could effectively improve
energy consumption and lifetime of NVM, we find a totally different
story when it comes to neural network training applications. A
unique phenomenon of bit accumulation among various weight bits
is found since training techniques usually use smaller learning rates
to adequately adjust weights and biases of neural networks. Figure 3
shows the bit result1 statistics of weights and biases when DenseNet-
BC is trained on CIFAR-10 dataset, where the x-axis denotes different
bits of weights and biases and the y-axis denotes the percentage bit
result count. It is observed that except for the sign bit (i.e., bit 0), the
most significant bits (MSBs) accumulates unevenly, while the least
significant bits (LSBs) accumulates very balanced. In other words,
due to the small learning rate when training neural networks, the
MSBs rarely change while the LSBs change frequently.

Fig. 3. Statistic of bit result of weights and biases when DenseNet-BC is
trained on CIFAR-10 dataset.

The effectiveness of applying WOM code for training NNs on
NVM-based system can be evaluated with the results shown in
Figure 4, where the x-axis denotes 16 groups of the encoded 32-
bit weights and biases while the WOM code is adopted, and the
y-axis denotes the number of bit-flip count when DenseNet-BC is
trained on CIFAR-10 dataset. Note that, in Figure 4, S denotes the
sign bit, En denotes bit n of the exponent part, and Mn denotes
bit n of the mantissa part. It is found that the bit-flip accumulation
among different encoded bits is still unbalanced. For instance, the
encoded MSBs (e.g., E2 + E3) barely flip, but the encoded LSBs
(e.g., M22 +M23) flip frequently. Furthermore, the number of bit-
flip accumulation among encoded LSBs are very large. It implies
that the energy consumption and endurance issues of NVM-based
system with adopting WOM code can be still deteriorated. To this
end, we come up with a novel but challenging idea. Since neural
network is well-known for its approximate computing property, is it

1To simplify the discussion, we assume the data are stored with IEEE-754
32-bit floating-point format when training neural networks, but the observation
and our proposed approach can be extended to other data precision format with
limited modification.

possible to propose an appropriately revised WOM code programming
design with exploiting the approximate computing for training on
NVM-based system, so as to not only improve energy consumption,
endurance and write performance, but also maintain comparable
neural network accuracy.

Fig. 4. Bit-flip accumulation of weights and biases encoded by WOM code.

This work is inspired by the challenges in leakage power and
memory density problems on conventional DRAM-based devices
when training neural networks. Even though exploiting NVM-based
system can resolve the problems, it further causes worse energy
consumption, endurance and write performance issues. Compared to
PreSET, adopting WOM code on NVM-based system to program
weights and biases of neural networks can improve write latency and
reduce the number of bit-flip accumulation simultaneously; however,
we observe that not only the bit-flip accumulation over different data
bits is unbalanced, but also the total amount of bit-flip accumulation
can be extremely large when training neural networks. Such charac-
teristics would further significantly increase energy consumption and
deteriorate endurance on NVM-based devices. The technical problems
then fall on (1) how to reduce redundant bit flips when program
weights and biases of neural networks with adopting WOM code,
(2) how to balance the uneven bit-flip accumulation among different
data bits of weights and biases, and (3) how to wisely combine
the programming design of NVM with the approximate computing
characteristic of neural networks without sacrificing neural network
accuracy. In the following section, we shall propose to consider
the properties of neural networks and non-volatile memory jointly.
Particularly, we will present the approximate programming designs
for neural networks on NVM-based system with adopting WOM code.

III. APPROXIMATE PROGRAMMING DESIGN FOR ENERGY,
ENDURANCE AND PERFORMANCE ENHANCEMENT

A. Design Overview

As we mentioned in previous sections, this work adopts PCM as the
material of NVM main memory. Hereafter we refer to NVM and PCM
interchangeably when there is no ambiguity. To improve the energy
and lifetime for neural networks on NVM-based system, the main
challenge falls on how to effectively reduce and evenly distribute
the number of bit flips over all PCM cells (i.e., NVM cells). As
a result, the objective of this section is to propose an approximate
programming design to address the mentioned issues. To be more
specific, in Section III-B, an approximate WOM code (referred to
as “AppWOM”) method with considering characteristics of weight
and bias updates of NNs and concept of approximate computing will
be presented. The proposed AppWOM will be used to (1) skilfully
create more write chances for WOM encoding processes by ignoring
some updates on the less important data, (2) effectively reduce the
number of total bit flips over all PCM cells, and (3) cautiously
maintain and balance the even bit-flip accumulation for all PCM
cells. With the proposed AppWOM, the energy consumption and
uneven bit-flip issues can be significantly limited and bounded, and
it thus improves the energy consumption and endurance for NNs on
NVM-based system. Later in Section III-C, a wear-aware ping pong
policy, which integrates the management of PreSET and PreRESET
operations with the proposed AppWOM, will be presented to further
address how the number of bit flips and energy usage can be further
improved and limited.

B. AppWOM: Approximate WOM Code Method

1) Design Concept: Lessons learned from Figure 3 and Figure 4
are twofold. First, the bit change rate on LSBs (i.e., the mantissa
part of IEEE-754 floating-point format) of weights and biases is
much higher than that of MSBs. This implies that LSBs of weights
and biases are more vulnerable to alter, compared to that of MSBs.
Second, the number of total bit flips are dominated by that of
accumulated bit flips on the mantissa part even the WOM code is
adopted. As a result, our primary objective is to ease and reduce the
accumulation rate of bit flip on LSBs (i.e., mantissa part) so that the
energy consumption and uneven bit-flip accumulation issues can be
resolved.

As reported in existing work, neural networks have the error-
tolerable characteristics [5], [11], [21]; that is, NNs can maintain
the accuracy even data of some less important bits are deliberately
ignored. In the mantissa bits in the IEEE-754 floating-point format,
the former half of mantissa bits represent the larger data values, and
thus they are much important bits than the latter half of mantissa
bits. Such an observation inspires us to propose an approximate
WOM (referred to as AppWOM) code design, which considers the
importance of the different bits and integrates considerations with
encoding processes of the conventional WOM code. The main idea
of AppWOM is to reserve the update chances of less important bits
(i.e., the latter half of mantissa bits) for serving the oncoming updates
on the more important bits (i.e., the former half of mantissa bits). To
realize this idea, bits of weights and biases are partitioned, regrouped,
and stored on the NVM, as shown in Figure 5. To be more specific,
the 22 mantissa bits except for the first bit are partitioned into two
groups: the 11 former bits are categorized to important bit group, and
remaining 11 latter bits are categorized to unimportant bit group. The
first bit of both groups are grouped together, the second bit of both
groups are grouped together, and so on. They are then stored on the
NVM and applied with AppWOM code for the purpose of reducing
and easing the bit-flip accumulation. On the other hand, since the
MSBs (i.e., one sign bit, 8 exponent bits, and the first mantissa bit) are
highly related to the data precision, it needs to carefully and precisely
manage the updates on these bits. As a result, they are divided into
groups of two, stored on the NVM, and handled with applying the
conventional WOM code, so that the accuracy of NNs will not be
significantly affected.

Fig. 5. How weights and bias are partitioned, grouped, stored, and managed
in the proposed AppWOM design.

2) AppWOM Code Method Design: This section presents how
to construct AppWOM code method with taking the importance
of different bits into considerations. As shown in Figure 5, the 22
mantissa bits except for the first bit are partitioned and regrouped, e.g.,
mantissa bitsM2 andM13 are grouped and written with the proposed
AppWOM code. Compared to the conventional WOM code method,
the core idea of our proposed AppWOM is to update the encoding
state for the encoded group only when the important bit or both of
two bits need to be updated. In other word, the proposed AppWOM
code keeps the encoding state unchanged and ignore the update
request while it only needs to update the unimportant bit of encoded
groups. Following this idea, the conventional WOM code method
can be revised and refined to construct the AppWOM code, and the
procedure of how to construct the proposed AppWOM code is shown

(a) Remove the paths which represent the change on
only the unimportant bit.

(b) AppWOM10 is used to serve updates on PCM
cells being applied with PreSET operations, i.e., all
bits are ‘1’.

(c) AppWOM01 is used to serve updates on PCM
cells being applied with PreRESET operations, i.e.,
all bits are ‘0’.

Fig. 6. How to construct the proposed AppWOM code.

in Figure 6. The procedure is as follows: Taking the conventional
WOM code shown in Figure 1 as the initial state. According to the
core idea of AppWOM, if it only needs to update the unimportant
bit, i.e., the latter bit, of the encoded group, the AppWOM will
directly ignore the update requests and keep the encoding state in
the same state. As a result, the paths which represent the change on
only the unimportant bit can be removed from the original WOM
code method, as shown in Figure 6(a). It thus results in the situation
that some encoding states are not likely to be reached while the
idea of AppWOM is applied. As a result, the proposed AppWOM
code method can be derived by removing these unreachable states, as
shown in Figure 6(b). Since PCM cells can be applied with PreSET
or PreRESET operations, the proposed AppWOM code is further
extended to two types for serving writes on PCM cells with the
different initial states. The AppWOM10 is used to serve updates on
PCM cells being applied with PreSET operations, i.e., all bits are
‘1’. The AppWOM01 code can be obtained by inverting the value on
states of AppWOM10 code, and it is used to serve updates on PCM
cells being applied with PreRESET operations, i.e., all bits are ‘0’,
as shown in Figure 6(c).

Fig. 7. An example of the proposed interleaving region allocation strategy.

How the energy consumption and the number of accumulated bit
flips are improved by the AppWOM can be explained with the exam-
ples shown in Figure 7. The four programming approaches over PCM
are compared, and they are raw data write with PreSET, WOM with
PreSET, AppWOM10 with PreSET, and APPWOM01 with PreRESET
respectively. Suppose they are all in the PreSET or PreRESET state
initially, and each of them is used to serve 8-bits data updates for
weights and biases of NNs. Let the energy to execute the PreSET
and PreRESET are 14 J and 20 J respectively [2], and the following
three updates to the weight/bias data are 00011011, 11101110, and
01010101. It is found that the raw data write approach suffers from the
serious bit-flip accumulation and energy consumptions issues since it
results the 20 bit flips in total and consumes 340 J of the energy
consumption. This is because this approach needs to apply PreSET
operations on PCM cells before they are programmed next time, and it
thus results in the negative effects over NVM-based system. It is also
observed that the bit-flip accumulation and energy consumption issues
can be slightly improved while the convention WOM code is applied.
Although the WOM code method can ease the bit-flip accumulation

problem by executing two updates on the same allocated PCM cells,
it still needs to apply PreSET operations after the two updates of
the allocated PCM cells are exhausted. The previous results reveal
two facts, and they are as follows: (1) The conventional approaches
can not completely turn all the bits to opposite value, and thus result
in the uneven bit-flips accumulation issue. (2) Applying the PreSET
operation on the changed PCM cells deteriorates the uneven bit-
flips accumulation issue, and further results in the additional energy
consumption. Fortunately, these issues can be effectively resolved
while the proposed AppWOM code design is applied. As shown in
Figure 7, the bit-flip number of both AppWOM10 and AppWOM01

are 12, and the energy consumption of AppWOM10 and AppWOM01

are 240 J and 168 J respectively. The significant improvement on
both energy consumption and bit-flip accumulation is due to the
proposed AppWOM code design might have more update chances
for serving the oncoming writes, compared to the conventional WOM
code design. In this example, PCM cells with applying the proposed
AppWOM code can be used to execute three updates since some
unimportant updates are ignored while the second data write comes.
In addition, different from previous approaches which always apply
PreSET on the changed PCM cells, the PCM cells which remain in
‘1’ will be applied with PreRESET operations to completely turn all
the bits to opposite value. These PCM cells will then be used to serve
the oncoming updates with applied the AppWOM01 code method. As
a result, the energy consumption and bit-flip accumulation issues can
be effectively resolved. Note that, as astute reader might point out
that some PCM cells might store data under the different encoding
stage on the memory line while the proposed AppWOM is adopted.
How can we identify what is the correct stage of the 3-bits read data
In fact, this can be known by counting the number of ‘1’ or ‘0’. For
PCM cells with applying AppWOM10 code, they are in the first and
second write stage if the number of ‘1’ on the 3-bits read data is 2
and 1 respectively. Without loss of generality, this approach can be
also applied on PCM cells with applying AppWOM10 code. Such
an identification approach only needs one additional read which is
neglectable while it is compared to the write latency of PCM cells.

C. Wear-aware Ping Pong Policy

This section proposes a wear-aware ping pong policy to control
the flip of all PCM cells so that the proposed AppWOM10 and
AppWOM01 codes can be smoothly applied for cells with the
different initial states. In addition, we need to address the problem
that WOM-related approaches could result in the additional space
overhead since they creates one-bit overhead for every two-bit data.
It can result in the worse endurance problem on the PCM. In our target
environment, all the PCM cells will be divided into two regions. One
is the PreSET region and the other is the PreRESET region. For all
PCM cells of the PreSET region, they are initiated with applying
the PreSET operation, and all of their initial value state are ‘1’.
On the other hand, for all PCM cells of the PreRESET region, they
are initiated with applying the PreRESET operation, and all of their
initial value state are ‘0’. Taking PCM cells in the PreSET region as
example, they are used to serving the update of weights and biases.

As depicted in Figure 8, these PCM cells will be gradually turned into
the opposite value, i.e., from ‘1’ to ‘0’. After being nth updated by the
AppWOM10 code, some of these PCM cells can afford one or more
updates but some of them can not. Since some of them had exhausted
their update chances, they need to be applied PreSET or PreRESET
operation for refreshing its data state. At this moment, the wear-aware
ping pong policy deliberately chooses to apply PreRESET to the PCM
cells which remain in the data state ‘1’ and forcedly turn these used
PCM cells to the opposite value so as to even exhaust their bit-flip
usage, as shown in left-hand side of Figure 8.With such a wear-aware
ping pong policy, the issues of the uneven bit-flip distribution and
redundant bit-flip accumulation can be limited. Furthermore, those
cells being applied with PreRESET can all be in the RESET state, and
they thus can be used to serve the oncoming write with applying the
AppWOM01 code under the proposed wear-aware ping pong policy.
The similar handling processes can be repeated, and then all the PCM
cells of the PreRESET region will be turned into the opposite value,
i.e., from ‘0’ to ‘1’, as shown in right-hand side of Figure 8. In
conclusion, with the integration of the proposed AppWOM and wear-
aware ping pong policy, PCM cells of both PreSET and PreRESET
regions will be continuously switched. PCM cells of the same region
can be gradually changed from ‘1’ to ‘0’, then from ‘0’ to ‘1’, and
so on. As a result, the proposed wear-aware ping pong policy limits
and eases the processes of bit-flip accumulation over all PCM cells,
and it also avoids the unnecessary bit-flip accumulation and energy
consumption caused by applying PreSET operations on the encoded
PCM cells.

Fig. 8. Energy-efficient and wear-aware update policy.

IV. EXPERIMENTAL EVALUATION

A. Experiment Setup

In this section, a series of experiments were conducted to evaluate
the performance of our proposed approximate programming design.
Our proposed AppWOM and the other compared approaches are
implemented and evaluated in Caffe [23] and the NVM simulator [21].
The simulation platforms are NVIDIA GTX 1080 GPU and Intel
i7-7700 CPU. The proposed AppWOM design is compared with
the PCM-based system with adopting PreSET [12] (referred to as
PreSET), the PCM-based system with adopting PreRESET (referred
to as PreRESET), and the PCM-based system with adopting WOM-
SET [22] (referred to as WOM-SET). Table I shows the parameters
and setups of the investigated neural network, and Table II demon-
strates the configurations of evaluated PCM-based main memory.

TABLE I. PARAMETERS OF THE EVALUATED NN.

NN
Model Dataset Base

Learning Rate
Mini-batch

Size
Number of
Iteration

LeNet MNIST 0.01 128 47K
GoogLenet MNIST 0.001 256 58K
DenseNet-BC CIFAR-10 0.0001 256 50K

In the experiment results, we will present the reduction of bit-
flip counts on PCM, so as to completely and deeply analyze how the
proposed design reduces redundant writes and balance uneven writes.
Besides, the evaluated results of write energy consumption will be
presented so as to understand how the proposed design improve the
write energy efficiency of training neural network on NVM-based
system. After that, we will present the endurance results so as to

know how effectively the proposed approximate programming design
enhance the PCM lifetime; here, we define the lifetime as the number
of write cycle during the time period from starting training process
to any of the memory cells is worn out. Lastly, we will demonstrate
the performance results, in terms of the average write latency of
training neural network models, so as to understand how the proposed
design affect the efficiency of training neural network on NVM-based
system.

TABLE II. EXPERIMENT SETUP OF PCM-BASED MAIN MEMORY [2].

Read latency 125ns Read energy 2pJ/bit
SET latency 1μs SET energy 13.5pJ/bit
RESET latency 125ns RESET energy 19.2pJ/bit
Endurance 10

8 Capacity 32GB

B. Experiment Results

Firstly, to full understand how the proposed design reduce redundant
writes, Figure 9 presents the bit-flip counts of the proposed approx-
imate programming design under the investigated neural network.
The results are obtained when DenseNet-BC is trained on CIFAR-
10 dataset. The y-axis denotes the number of bit-flip counts, and the
x-axis denotes different data bits. Compared to the baseline approach
which is shown in Figure 3, we observe that the bit-flip number of the
proposed approach can be decreased by up to 14%, and the reduction
of bit-flip count is especially remarkable on the least significant bits.
The rationale behind such a great improvement is because with the
support of approximate WOM code method and wear-aware ping
pong update policy, we excessively reduce the redundant bit flips by
programming insignificant data approximately. Note that, even though
the bit-flip counts of few groups (e.g., E2 + E3 and E4 + E5) are
still less, this uneven bit-flip problem could be simply resolved by
adopting a general wear leveling approach.

Fig. 9. Bit-flip results when DenseNet-BC is trained on CIFAR-10 dataset.

Figure 10(a) presents the energy consumption comparison of the
four investigated approaches under LeNet, GoogLnet, and DenseNet-
BC. The y-axis denotes the average energy consumption, and the
x-axis denotes the evaluated approaches. Comparing to the PreSet,
PreReset, and WOM-SET approaches, we find that the energy con-
sumption of our proposed APP-WOM design on PCM-based system
can be effectively reduced by up to 57%, 61%, and 20%, respectively.
The rationale behind this is that our proposed approximate program-
ming design on PCM-based system could significantly decrease the
number of redundant writes, and thus the energy consumption is also
reduced due to the less amount of programmed data.

Figure 10(b) demonstrates the endurance comparison of various
approaches under the investigated neural networks, where the y-
axis denotes the lifetime of PCM in terms of number of weight
updates, and the x-axis denotes the four approaches. Comparing to

(a) Energy consumption results. (b) Endurance results. (c) Write performance results.

Fig. 10. Experiment results.

the PreSet, PreReset, and WOM-SET approaches, it is observed that
the endurance results of PCM with adopting APP-WOM and wear-
aware ping pong update policy are improved by up to 42%, 78%, and
78% respectively. This is because of the balance of uneven writes and
reduction of redundant writes.

Figure 10(c) shows the performance comparison of the four inves-
tigated approaches under the investigated neural network, where the
y-axis denotes the average write latency of training neural networks
and the x-axis denotes the evaluated approaches. Comparing to the
PreReset approach, it is observed that our proposed approximate
programming design can effectively get 31% – 46% reduction of
the average write latency. It is because our proposed design wisely
exploits the PreSET and preRESET operations, and could achieve the
decent write performance when every write request comes.

V. CONCLUSION

The NVM-based system seems to provide great solutions, but it
also arises energy consumption, endurance and write performance
issues. Even though adopting WOM code method on NVM-based
systems could help in improving the performance and endurance, it
further results in NVM-unfriendly features, such as redundant and
uneven writes. To resolve these problems, this work proposes an
approximate programming design to enable training neural networks
on NVM-based devices. Specifically, an AppWOM method and a
wear-aware ping pong update policy are proposed to skilfully create
more write chances for WOM encoding processes by ignoring some
updates on the less important data. In addition, the proposed design
effectively reduces the number of total bit flips and cautiously
maintains the even bit-flip accumulation for all PCM cells. The
experiment results are very encouraging. The experimental results
show that our proposed design could enhance the energy consumption
by up to 61%, and improve the endurance and performance by
up to 78%, and 46% respectively, with the comparable validation
accuracy of neural networks. For the future work, we will evaluate
our proposed approximate programming design on larger datasets
and more complex neural network models to further verify the
effectiveness of the proposed design.

REFERENCES

[1] A. G. H. et al. MobileNets: Efficient Convolutional Neural Networks
for Mobile Vision Applications. CoRR, abs/1704.04861, 2017.

[2] B. C. L. et al. Architecting Phase Change Memory As a Scalable Dram
Alternative. SIGARCH Comput. Archit. News, Jun 2009.

[3] B. L. et al. Partial-SET: Write Speedup of PCM Main Memory. In
Proceedings of the Conference on Design, Automation & Test in Europe,
DATE ’14, pages 53:1–53:4, 2014.

[4] C. W. et al. Hot-Spot Suppression for Resource-Constrained Im-
age Recognition Devices With Nonvolatile Memory. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems,
37(11):2567–2577, Nov 2018.

[5] F. M. et al. Power- and Endurance-Aware Neural Network Training in
NVM-Based Platforms. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 37(11):2709–2719, Nov 2018.

[6] F. N. I. et al. SqueezeNet: AlexNet-level Accuracy with 50x Fewer
Parameters and <1MB Model Size. CoRR, abs/1602.07360, 2016.

[7] H. C. et al. TinyTL: Reduce Memory, Not Parameters for Efficient
On-Device Learning. In Advances in Neural Information Processing
Systems, volume 33, pages 11285–11297, 2020.

[8] J. L. et al. MCUNet: Tiny Deep Learning on IoT Devices. CoRR,
abs/2007.10319, 2020.

[9] J. Y. et al. Accelerating Write by Exploiting PCM Asymmetries. In 2013
IEEE 19th International Symposium on High Performance Computer
Architecture (HPCA), pages 282–293, Feb 2013.

[10] M. C. et al. BinaryConnect: Training Deep Neural Networks with
Binary Weights during Propagations. CoRR, abs/1511.00363, 2015.

[11] M. D. et al. On-chip Deep Neural Network Storage with Multi-
level eNVM. In Proceedings of the 55th Annual Design Automation
Conference, page 169, 2018.

[12] M. K. Q. et al. PreSET: Improving Performance of Phase Change
Memories by Exploiting Asymmetry in Write Times. SIGARCH
Comput. Archit. News, 40(3):380–391, jun 2012.

[13] M. R. et al. vDNN: Virtualized Deep Neural Networks for Scal-
able, Memory-efficient Neural Network Design. In The 49th Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO-49,
pages 18:1–18:13, 2016.

[14] M. R. et al. XNOR-Net: ImageNet Classification Using Binary
Convolutional Neural Networks. CoRR, abs/1603.05279, 2016.

[15] O. Y. et al. Multi-GPU Training of ConvNets. CoRR, abs/1312.5853,
2013.

[16] S. C. et al. Flip-N-Write: A Simple Deterministic Technique to
Improve PRAM Write Performance, Energy and Endurance. In 2009
42nd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), pages 347–357, Dec 2009.

[17] S. C. et al. Efficient GPU NVRAM Persistence with Helper Warps.
In 2019 56th ACM/IEEE Design Automation Conference (DAC), pages
1–6, 2019.

[18] S. H. et al. Deep Compression: Compressing Deep Neural Networks
with Pruning, Trained Quantization and Huffman Coding. arXiv
preprint arXiv:1510.00149, 2015.

[19] W. K. et al. Nvwal: Exploiting nvram in write-ahead logging. In Pro-
ceedings of the Twenty-First International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS
’16, page 385–398, 2016.

[20] W. W. et al. Learning Structured Sparsity in Deep Neural Networks. In
Advances in Neural Information Processing Systems 29, pages 2074–
2082. 2016.

[21] W. W. et al. Achieving Lossless Accuracy with Lossy Programming
for Efficient Neural-Network Training on NVM-Based Systems. ACM
Trans. Embed. Comput. Syst., 18(5s):68:1–68:22, Oct. 2019.

[22] X. Z. et al. WoM-SET: Low Power Proactive-SET-based PCM Write
Using WoM Code. In Proceedings of the 2013 International Symposium
on Low Power Electronics and Design, ISLPED ’13, pages 217–222,
2013.

[23] Y. J. et al. Caffe: Convolutional Architecture for Fast Feature Embed-
ding. In Proceedings of the 22Nd ACM International Conference on
Multimedia, MM ’14, pages 675–678, 2014.

[24] A. Krizhevsky. One Weird Trick for Parallelizing Convolutional Neural
Networks. CoRR, abs/1404.5997, 2014.

